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Abstract—The Cloud attempts to provide its users with
automatically scalable platforms to host many applications and
operating systems. To allow for quick deployment, they are often
homogenised to a few images, restricting the variations used
within the Cloud. An exploitable vulnerability stored within an
image means that each instance will suffer from it and as a result,
an attacker can be sure of a high pay-off for their time. This
makes the Cloud a prime target for malicious activities. There is a
clear requirement to develop an automated and computationally-
inexpensive method of discovering malicious behaviour as soon as
it starts, such that remedial action can be adopted before substan-
tial damage is caused. In this paper we propose the use of Mini-
OS, a virtualised operating system that uses minimal resources
on the Xen virtualisation platform, for analysing the memory
space of other guest virtual machines. These detectors, which we
call Forensic Virtual Machines (FVMs), are lightweight such that
they are inherently computationally cheap to run. Such a small
footprint allows the physical host to run numerous instances to
find symptoms of malicious behaviour whilst potentially limiting
attack vectors. We describe our experience of developing FVMs
and how they can be used to complement existing methods to
combat malware. We also evaluate them in terms of performance
and the resources that they require.

I. INTRODUCTION

Security is often cited as one of the most contentious issues
in Cloud computing. It is argued that as the Cloud is intended
to handle large amounts of data, attackers can be sure of a
high pay-off for their activities. This makes the Cloud a prime
target for malicious activities. In addition, to benefit from the
economies of scale, the applications and operating systems
are homogenised to a few images restricting the variations of
products used within the Cloud. As a result, a vulnerability
can be exploited on a large number of machines. There is a
clear need to develop dynamic defence techniques to discover
malicious behaviour as soon as it starts so that remedial action
can be taken before substantial damage is done. This paper
builds on Harrison et al., which described Forensic Virtual
Machines (FVMs) [1]. At the heart of the approach is the
observation of a trend in the reuse of malicious components
by the writers of malware [2]–[4]. The use of components seem
to be partly due to pressures to write better quality malware
by reusing existing components and algorithms used by other
malware writers.

However, reusing components with malware can produce
symptoms which are common between not only variants of
one piece of malware but also between different kinds of

malware. For example, most malware on Windows set one
or more registry keys to unusual values [5], [6]. It is also
common for malware to abort processes such as anti-virus
systems to prevent detection [6]. We view unusual changes to
the registry and aborting processes as examples of symptoms
of malware. Symptoms are different from malicious behaviour;
symptoms are detectable traces of activities that facilitate a
malicious activity. For example, if malware changes the value
of a registry key to an unusual value and we can detect that
change, we can interpret this as a potential sign of malicious
activity. Of course, registry values can be changed for perfectly
legitimate reasons. However, observing unusual changes to the
registry at the same time as particular processes disappearing,
such as an anti-virus product, must increase our suspicion that
the system is infected so that remedial actions can start.

Building on the above observation, FVMs are small Virtual
Machines (VM) that can monitor other VMs to discover
the symptoms in real-time via Virtual Machine Introspection
(VMI) [1]. FVMs are small; each FVM is dedicated to
identifying only one symptom. As a result, the crucial part
of the code within the FVMs can be manually inspected.
In addition, FVMs exchange messages via secure multi-cast
channels to share information about the discovery of symptoms
within the VMs. This allows the FVMs to conduct distributed
monitoring; if an FVM detects a symptom in a virtual machine,
it will inform other FVMs to come to its assistance in order to
detect the presence of other symptoms. The more symptoms
are detected, the more we can be sure of the possibility
of malicious behaviour. The FVMs report to a C&C centre
that collects and collates the information. The FVMs, C&C
and communication channel act as an autonomous system for
dynamic defence. The C&C module can use the virtualisation
mechanism to “freeze” the VM by denying it any CPU cycles,
effectively stopping the malicious activity. The memory will
remain frozen until it can be quickly reviewed or alternatively
can be copied for a complete forensic analysis.

Harrison et al. described the overall vision of the FVM. In
this paper, we report our experience in engineering prototype
FVMs for detecting a wide range of symptoms. To keep
the FVMs small we have used the para-virtualised Mini-OS
operating system as the basis to produce FVMs for Xen [7]. We
have also used the FVMs for detecting symptoms associated
to ZeuS [5], Spyeye [8] and Gauss [9]. In addition, we have
conducted a number of experiments to evaluate the suitability
and performance of Mini-OS for introspection. We also discuss



the potential shortcomings of using Xen and Mini-OS and
propose solutions to overcome them.

The paper is organised as follows. The next section briefly
describes preliminary information about virtualisation, intro-
spection and Mini-OS. In Section III we describes an overview
of FVMs, which is followed by an explanation of the problem
addressed in the paper. We shall present evidence to support
the presented hypothesis. Section V sketches the proposed
solution and highlights the architecture of the FVMs followed
by Section VI which reflects on the challenges of creating the
FVMs. Section VII evaluates the performance of the prototype
FVMs. Discussions about related work are in Section VIII and
the paper then ends with a conclusion.

II. PRELIMINARIES

In this section we shall briefly review preliminary material
which will be used in the rest of the paper.

A. Introspection

Virtual Machine Introspection (VMI) is a technique that
enables one guest virtual machine (VM) to monitor, analyse
and modify the state of another guest VM by observing its
virtual memory pages. Introspection is a powerful technique
allowing the security related software to inspect VMs while
remaining hidden. Despite this, it has been proven possible
for malware in a VM to detect whether they are running on
a virtualised platform [10], [11]. Additionally it could also be
possible for malware to detect that they are being monitored
by an FVM through the use of side-channel attacks that rely on
shared physical resources such as a vCPU cache [12]. These
problems are not within the scope of this paper, but could be
mitigated by exclusively allocating FVMs to their own shared
CPU core which is kept away from use by customer VMs.

One of the early methods of introspection on one VM
from an external VM was by Garfinkel and Rosenblum [13].
They used VMI to develop an Intrusion Detection System
(IDS), called Livewire, for a customised version of VMware
Workstation for Linux. VMI techniques have also been used
in digital forensics [14], [15]. Hyperspector [16] implemented
another IDS for distributed systems using VMI to isolate the
IDS from the servers that they monitor. These isolated systems
are located inside distinct VMs which are called IDS VMs.
There have also been commercial products released which have
been built using VMI techniques [17].

B. Mini-OS

In our implementation we have used Mini-OS [18]. Mini-
OS began as an example from the Xen Community of how
to port a kernel to the Xen architecture for para-virtualised
applications. We chose Mini-OS because it is an extremely
small kernel, with a minimal install resulting in less than
1MB in size. It does not have a userspace or multi-threading
capabilities. Other extras can be attached to Mini-OS, such as
a TCP/IP stack, a standard C library and a basic graphical
system. In addition, there is an experimental network file-
system under development. However, with the exception of
the standard C library, we did not include such additional
functionality in order to reduce the size of the attack surface.
An additional advantage of the small size is the ability to run

Fig. 1. FVMs inspecting Customers’ VMs

a larger number of FVMs within available infrastructure. For
further details about Mini-OS we refer the reader to a a short
guide to the kernel startup process [19].

III. FORENSIC VIRTUAL MACHINE

In this section we shall briefly review the idea of Forensic
Virtual Machines [1]. We are aiming to address two problems.
Our first aim is to present an approach to detect a diverse set of
malware. To do so, we propose looking for the symptoms of the
malicious behaviour as opposed to looking for the malicious
behaviour itself. This is similar to looking at symptoms of
disease in the human body in order to identify unhealthy
individuals. Secondly, in order to make efficient use of machine
resources, our FVMs look for symptoms in multiple virtual
machines. This reduces the cost of creation of FVMs. In
addition, the sharing of the FVMs between multiple virtual
machines results in increasing security, as the attackers cannot
know how many FVMs are currently observing them. In
Section III-A we will explain the outline of the approach. In
Section III-B we describe a wide range of symptoms and their
relationship to major security attacks.

A. Introspecting Guest VMs via small VMs

Figure 1 depicts an outline of the approach implemented
in this paper. It shows a number of small independent VMs,
called Forensic Virtual Machines (FVMs), which have been
given the capability to inspect the memory pages of specific
customer VMs. Once a symptom has been detected, then the
FVM reports its findings to other FVMs. In such cases, other
FVMs will be prompted to inspect the VM for the additional
symptoms. In addition, when a symptom is discovered, this fact
is immediately reported via Domain 0 (Dom0) to a C&C. The
C&C correlates this information with information from other
sources to identify an appropriate mitigation. For instance,
the C&C, through Dom0 and hypervisor, can “freeze” the
customers’ VM by denying it any CPU cycles in order to stop
the malicious activity. The memory will remain frozen until it
can be forensically examined or copied for further analysis.

B. Detecting Symptoms via Introspection

In ordinary life, symptoms of human body illnesses often
prompt us to ask for medical help. In our approach detecting
symptoms will also help us to single out infected virtual
machines among a large number running on a blade.



Taking the malware family ZeuS [5] for example, when it is
installed by an administrator account, it alters the Userinit
registry value in order to automatically load itself again during
system start-up. The majority of applications will leave this
alone and create a log-on start-up script rather than amending
this registry value. A change to this value could very well
be considered a potentially malicious act and hence can be
counted as a symptom. Another viable symptom would be the
use of non-pronounceable mutex names. Developers regularly
use human readable keys to make debugging easier. ZeuS v1
uses the string of characters ” AVIRA x” where x is a number
dictating the component in question, whilst the next version
(ZeuS v2) uses randomised GUIDs, both of which may be
considered as not being pronounceable.

C. Mobility algorithms

FVMs, by design, include a set of distributed algorithms
that describe which VM is next for analysis and how long
for. These algorithms could range from very simple random
inspections to dynamic ones which consolidate the number of
current symptoms and their respective types. These not only
can introduce a level of unpredictability to an attacker who
wishes to anticipate their movements, but can also optimise
FVMs to concentrate monitoring resources where they are
most needed. We refer to such algorithms as mobility algo-
rithms, which can be tailored by the infrastructure provider.
In our previous work a sample of a mobility algorithm is
presented [1]. In addition, the paper reports on a simulator
that we used to study the outcome of such algorithms.

IV. DESCRIPTION OF THE PROBLEM

In the rest of this paper we shall describe our implemen-
tation of the FVMs and report on their performance. The
following are four main requirements which were followed.

A. Smaller FVMs to reduce attack surface

It is essential for the FVM to be as small as possible to
reduce the attack surface. All non-essential libraries must be
removed, drivers which are typically used for general purpose
communications have no use in FVMs and must be omitted
and efficient coding practices must be adopted. With the
omissions in place, there are less malleable elements that can
be compromised.

B. Modularised Design to allow reuse

It is essential to reuse the FVM code to ensure that
the security experts can examine and certify the reused part
only once. As a result, the architecture of the FVM must be
modularised. Identifying correct modules and creating suitable
APIs is highly non-trivial, as the shared modules must be
used to write a wide range of symptom detectors and mobility
algorithms. Creating modularised FVM allows better testing,
as testing can be carried out on individual components focusing
on a single aspect of the development at a time.

C. Efficient Introspection

VMI requires computational resources, which could oth-
erwise be allocated to the clients; indeed computation is one
of the key commodities provided by the Cloud. Producing a
large number of virtual machines to monitor a guest virtual
machine can result in a waste of valuable computational
resources. Since Cloud systems are expected to be very large,
any practical method of inspecting the host VMs must be
scalable. As a result, a key crucial challenge is to ensure that
searching algorithms are not resource intensive and high in
complexity. In Section VII, we shall present the outcome of
some measurements on the amount of the resources used by
the FVMs, so that they can be allocated appropriately.

D. Lightweight, aiming to remain undetected

It is essential to reduce the complexity of the FVMs
to decrease the chance of introducing unwanted side-effects.
To do so, the following requirements when introspecting the
memory pages are followed:

• FVMs should only read. Granting permission to the FVMs
to write into the guest memory might jeopardise the
integrity and security of the guest domain. In addition,
disabling write access will reduce the attack surface and
will help in hiding the activities of the FVMs from
perpetrator of the malicious activities.

• Each FVM should only look for one symptom. This will
not only aid in reducing the size and complexity of the
FVMs, but also make it easier for manual code review of
the searching algorithm used within the FVM.

• FVMs should introspect one domain at a time. This will
reduce the chance of contamination, allowing the FVMs
to perform a simple sensory function. As a result, no local
analysis is carried out; the FVM gathers the information
and the analysis is carried out at the C&C module.

V. ARCHITECTURE OF AN FVM

We have created an architecture comprising four modules
as depicted in Figure 2.

A. Main Component

Management of the FVM is handled in the Main com-
ponent. It provides an abstract API to the rest of the FVM
for executing a number of functions. This includes posting of
messages (postMessage) so that the FVM can communicate
with other FVMs and the C&C, moving of FVMs from one
VM to another (moveVM) and getVMState, which retrieves
information about the symptoms discovered by a given VM.
The Main component also checks whether the Time To Live
(TTL) has expired, which means that the FVM must move to
inspecting another VM. The Main component wires all other
components together.

B. Blackboard Inter-domain Communication

The communication between FVMs is implemented via
a shared message-board mechanism. FVMs store (multicast)
information about their activities such as a list of symptoms
discovered for each VM and the last time a VM was visited
within a blackboard. As depicted in Figure 2, each FVM has



Fig. 2. Architecture of an FVM

a blackboard component that incorporates a driver for reading
and writing from the blackboard. The blackboard itself is kept
within Dom0 using XenStore and is shared between multiple
FVMs. Each FVM uses an event channel via a third party
library called XenStoreSocket [20] to interact with Dom0.
Within Dom0, we have created a pool of receiver threads
that process events arriving through the event channel. This
architecture allows multiple FVMs to read and write to the
blackboard with Dom0. Each interaction is implemented as a
transaction.

Messages about the discovery of symptoms are posted on
the blackboard. The FVMs also report if no symptoms are
discovered. We treat both types of information with equal
importance, as the disappearance of a symptom can also be
useful for identifying a different type of symptom. However,
since FVMs’ time for searching for a symptom is often capped,
it is possible that the FVM is moved prior to discovery of the
symptom. Also, it is possible for an FVM to search the whole
memory space of an FVM and yet misses the symptom it is
looking for. To explain this assume the scenario that an FVM
is scanning the memory space for a given string of bytes. It is
possible that malware can alter the parts of memory which have
already been inspected. Such newly altered strings of bytes can
be discovered only by re-running the FVM or another FVM
of the same type.

C. Search Component

The Search component consists of two parts, a Search API
which is common across all FVMs and a Search function. The
two parts are wrapped in a piece of code which initialises and
executes the Search function. The search function itself makes
use of a Search API, which provides primitives for searching
memory pages and process tables with the help of the LibVMI
library [21] or a wrapper that we have developed for combining
functions with the LibVMI library to conduct popular types of
search.

Using the Search API, a search function is composed which
implements a searching algorithm. For example, to search for
a string in the memory pages of a given process, a searching
algorithm can obtain the pages using function two in Table

and then use a string searching algorithm, such as Boyer-
Moore [22] or Knuth-Morris-Pratt [23]. The search algorithm
is implemented as a function written in the C programming
language and compiled to executable code. The control of
execution is passed to this executable code once the FVM
initialises and has arrived at its target virtual machine. This
will allow the reuse of searching algorithms.

Within the FVM Search Component, there is an initial-
isation function to get the data required to introspect the
target VM. This function uses LibVMI initialisation to prepare
the FVM for the introspection. This function is depicted as
initialise search() in Figure 2. If the initialisation is successful,
then the search function is executed repeatedly while the TTL
has not expired. To do so, the checkTTL function of the Main
Component is used for checking TTL and then the moveVM
function is used for moving from one target VM to another
within a predefined neighbourhood of the guest VMs which
the FVM is assigned to. In case of discovery or absence of
symptoms the function postMessage of the Main Component
is used to update the blackboard.

D. Mobility

We have implemented three mobility algorithms (see Sec-
tion III-C). We have implemented a Random Scheme in which
the target VM is identified randomly from the VMs within
the neighbourhood. We have also implemented a Round-robin
scheme that circles through VMs within the neighbourhood
one-after-another. Finally, we have implemented the algorithms
described in [1]. These schemes are files written in the C
programming language which are included in the FVM and
the user is able to choose which mobility scheme to use within
an FVM by passing it in as a Mini-OS kernel parameter.

When the Time to Live in the Search Component has
expired, the moveVM method of the Main Component is
invoked, which starts the execution of the decide() method
of the Mobility Component. This method executes the mo-
bility scheme which the FVM is initialised with. The scheme
requires parameters which are obtained from the Main Compo-
nent by executing the getParametersOfVMs method. The Main
Component obtains this information by reading the contents
of the blackboard through the execution of the getVMState
method as depicted in Figure 2.

VI. ENGINEERING OF THE FVMS

In this section we shall discuss the technical aspects of the
architecture described previously and its relationship to the
requirement of the system described in Section IV.

A. Libraries used and modified

LibVMI is incompatible with Mini-OS, which was chosen
to produce small FVMs. It was modified and ported to run on
the Mini-OS para-virtualised kernel. Since Mini-OS does not
have a GNU LibC, we opted to use the embedded C library
known as Newlib [24], which has a minimal set of C libraries
to do essential tasks such as I/O, regular expression parsing,
string manipulation and producing timestamps. This allowed
us to keep the FVM small.



B. Xen Hypervisor and access control

The Xen hypervisor is completely agnostic to the concept
of different types of virtual machines (e.g. VM vs FVM).
Furthermore, the standard security model prevents a virtual
machine, other than Dom0, from looking into the pages of
another VM. The access control of Xen was modified to grant
the FVMs sufficient privileges to be able to introspect the mul-
tiple target virtual machines which define its neighbourhood.
In doing so, we allow an FVM to have access to the memory
of all required domains. These changes leave the security of
ordinary virtual machines unaffected. There is a clear need
for research into designing suitable access control mechanisms
within Xen to extend the current limited access control model.
In particular, any candidate model should differentiate between
an FVM and VM in terms of access control. This remains an
area for future work.

C. Virtual Machine Introspection via LibVMI

In our earlier work, the XenAccess library was used for
introspection [1]. In the current version we make use of the
LibVMI library, which supersedes the previous XenAccess
project. Suppose that we are interested in establishing whether
the address space of a given process, such as Internet Explorer
or Firefox, running within a virtualised guest OS, contains
a particular text sequence or section of (malicious) machine
code. There are four steps to search for such a text sequence
or code within the address space of a process running in the
target VM.

Step 1: Transferring of VM Introspection meta-data.
An FVM needs to access the meta information of a virtual
machine target, such as offset values, the name of the VM and
the memory size of the VM. This information is typically kept
in the XenStore entry for each virtual machine. Access to this
information is given to each FVM before they are all launched.
It is not desirable to embed the introspection offset information
within the FVM for practical reasons. For example, adding a
new guest required recompilation of the FVMs. As a result,
an entry containing this information is made in the XenStore
prior to its creation and configured with read-only access for
FVMs alone, no access by the rest. Having VM meta-data
entries shared across FVMs helps avoid redundant duplication
of this information. Additionally, all the kernel parameters of a
Mini-OS stubdomain can only be a total length of 1024 chars,
which is probably not long enough for all the introspection
information for a whole neighbourhood of VMs. These pieces
of data are passed using an FVM launcher script in Dom0.

Step 2: Determining and utilising OS offsets. In this step
we locate the offset of the target guest kernel task structures
using the parameters from Step 1. For both Windows and
Linux, the guest (kernel) virtual address of these structures
is either a well-known value or easily determinable. A guest
operating system (Windows or Linux for example) maintains
such internal structures that describe the application or tasks
currently instantiated on the system. Included in the task
structure for a particular process is a pointer to a region
that contains the page tables that should be loaded when that
process is running. Also included in that task structure, is a
list of areas of the application’s virtual address space that it
is actually using. Together, the page tables and virtual address

Fig. 3. Virtual Address Translation

space allow the determination of the actual system physical
memory locations being used by that application process.

Step 3: Inferring correspondence of virtual address to
physical address. In this step, we start from a task structure
within the guest’s virtual address. Then we calculate the
machine’s physical address for the task structure. Then the
physical page at that address is mapped into the FVM. As a
result, the FVM can access the contents of the guest’s physical
page and examines it. It can for example copy the contents
locally or analyse directly.

Taking Linux as an example, the page tables of any
application process running within the OS contain a mapping
for kernel virtual addresses of that OS as well as the application
addresses (paging protection mechanisms prevent application
processes actually accessing the kernel memory). On x86 based
platforms, the root location of the set of page tables from the
currently running guest process can be found by examining
a particular system register (CR3). This process is depicted
in (A) of Figure 3. This register machine state is available to
the FVM from the Hypervisor (Xen). Given that register value
(which is actually a physical memory address), the FVM maps
the physical page containing that physical address into its own
address space, see (C) of Figure 3. From that, it can traverse
the page tables being used by the target guest OS (mapping
additional physical pages from the guest as required) until it
finds the physical page corresponding to the virtual address of
the guest OS task structures.

Step 4: Crawl through the page tables. After identifying
the task structure of the guest OS, we can locate the actual
page tables and memory regions used by the process which
the search function is applied to. By proceeding along similar
lines as step (B) including page table traversing, the FVM
can now map the physical memory actually in use by the
application process of interest into its own address space and
inspect the contents.



D. FVM Message Format

Each symptom message includes a unique globally iden-
tifiable messageID. As each FVM looks for a unique type of
symptom, we have included Type to capture the unique corre-
sponding symptom of an FVM. The message is posted by an
FVM with the identifier FVM-DOMID which is introspecting a
VM identified globally by TargetDomID. There are also a few
reserved identifiers which are used for miscellaneous message
information. For example, a message could be sent to indicate
that the FVM has moved and is about to begin introspection
on a new domain. Another possibility is that a message could
be sent to inform the monitor that it is about to die cleanly
(or, if possible, that a fatal accident occurred). New message
entries are sent to the blackboard location, which only FVMs
have access to.

There was a choice of either using a logical clock system
or to rely on the underlying time functionality on the Mini-
OS. The problem with using logical clocks is the overhead of
synchronisation, a complication that FVMs should not have to
deal with. Thankfully, since the Mini-OS uses para-virtualised
interfaces, its time library can use a direct interface to the
clock that the Xen hypervisor provides, which proves to be
sufficiently reliable for research purposes.

E. Blackboard Inter-domain Communication

We have delegated the task of writing to the blackboard to
Dom0 to enforce mutual exclusion during updates. Each FVM
creates a direct connection to a backend daemon in Dom0,
which listens for symptom messages. This is achieved through
the use of Xen event channels. Due to the modularity of our
design, it is easy to switch the blackboard controller in the
FVM for another, such as one which uses the Xway inter-
domain communication library [25].

VII. EVALUATION

In order to illustrate the suitability of Mini-OS as a viable
operating system for FVMs, we evaluate its performance
in completing tasks that will be commonplace, for instance
accessing the process table. In our experiments we have used
a HP EliteBook 8540w with a dual core Intel i7, 8GB of main
memory and with hyperthreading disabled was used to perform
the tests. It had installed the Xen 4.1.2 hypervisor with Dom0
running Ubuntu 12.04, Xorg Server, Blackbox and the Xen
management tools. Dom0 was allocated 1.5GB of memory
with the remainder being available to other domains. Each
FVM uses at most 4MB of memory. In the future we intend
to reduce the size of FVMs; however this will have to be
changed within Xen. The Xen hypervisor generally only uses
large pages to prevent context switching when navigating often
large VM allocated memory. With all tests, the target VM was
an idle hardware virtualised domain running Windows XP with
300MB of main memory and a single vCPU.

Profiling: The granularity of timing measurements is de-
pendent on the gettimeofday function within Mini-OS.
The wall-clock is then updated frequently by the Xen hyper-
visor, so some level of inaccuracy is expected. However since
Mini-OS is a paravirtualised guest, the gettimeofday clock
has less synchronisation overhead, and is better suited for this
purpose than that of the equivalent function within a hardware
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Fig. 4. Time to spawn a new FVM.

virtualised domain (HVM). Once the tests were completed,
this data was passed from the FVM to a receiver daemon on
Dom0 via the Blackboard mechanism.

Scheduling: The credit-based scheduler that comes with
the Xen 4.1.2 source treats all VMs as equal for vCPU
time, including both FVMs and VMs. This lack of distinction
between a VM and FVM requires a new scheduler to better
handle the case of FVMs, otherwise FVMs may starve the
client VM of vCPU cycles as they will run at 100%. We
have reserved this for future work and do not deeply assess
scheduling and scalability in this paper.

A. Startup

When an FVM boots Xen must start the Mini-OS kernel
and then the FVM gathers information about its target.

1) Mini-OS Boot: When Xen creates a DomU it must start
internal process to allocate memory, access permissions and the
necessary components, such as the vCPU. This will become
more time consuming the more VMs it starts. Here we test
how long it takes to create Mini-OS DomUs. Management of
domains on Dom0 was controlled using the XM management
tools, which interact with the backend Xend daemon. These
tools spawn domains one at a time; in order to maintain
a consistent workload of FVMs we made them continue to
execute until a particular time.

In Figure 4 we see the time in seconds to spawn a new
FVM given a number of existing and working FVMs. We can
see that as the number of FVMs increases, the speed at which
Xend spawns new domains reduces. The spikes in the graph
are likely to be the behaviour of the scheduler readjusting to
provide Dom0 more execution time. This test shows that the
spawn time is quite significant if there are already a large
number of FVMs running on the hypervisor. This could very
well be changed with a new scheduler, allowing Dom0 and
client VMs to be a higher priority than FVMs.

2) FVM Initialisation: Once Mini-OS has booted, the FVM
must acquire information regarding its target. This process
includes gathering introspection meta-information about the
target VM from the XenStore, determining the memory layout
and using this information to find the kernel symbol table
within memory. This act can occur numerous times in the
lifecycle of the FVM instance as it moves from VM to VM.
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Each FVM reported the mean time taken, in microseconds,
to initialise the VMI meta-data ten times, and the results
were then averaged once more with the number of concurrent
instances running at that particular time. Figure 5 illustrates
this. When a single FVM was initialised, the mean average
was 48873µs. The exponential behaviour of this is due to
the delay between the FVMs and XenStore on Dom0. This
bottleneck could be substantially mitigated by passing all of the
information it requires as kernel parameters; however this does
not allow for updates or additional virtual machines. Another
alternative to reduce the memory footprint would be to host
the information on distributed high performance domains also
running Mini-OS to provide the latest data to the FVMs.

B. VMI Techniques

Each FVM will complete numerous tasks in order to navi-
gate the memory of a VM, including virtual address translation
in kernel or process space. In order to test the performance
of our FVMs over the alternative of using VMI on Dom0,
we compare the throughput of applications in both settings.
The first application attempts to access the process table and
obtain all of the running process names, seventeen in total,
on the target host. Figure 6(a) shows that the mean average
of getting access to this data was 217µs from our FVMs as
opposed to 3116µs when run on Dom0. An additional test was
made to loop through the modules available to the Windows
guest. The target had eighty five loaded modules and Figure
6(b) shows it took 1339µs from the FVM opposed to 20706µs
on Dom0. These particular tests were chosen as they have a
similar function to iterating a list within kernel memory.

A significant proportion of execution time involves trans-
lating virtual addresses and mapping the data from the target
VM. In order to stress-test this, we chose to access the first
one hundred bytes of a process, individually, in both kernel
and user space. In order to decrease the probability of pages
being swapped out, we chose the Windows kernel process,
ntoskrnl.exe, and the user process services.exe.
Figure 7 illustrates the difference in kernel and userspace
translations. The difference between the two are due to the
additional traversal of page entries as userspace will naturally
be found further in memory. The important difference within
this graph is, once more, the difference from Dom0 and
the FVM whereby the the FVM architecture has a better
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Fig. 7. Time to read 100 bytes of a process.

throughput when translating virtual addresses than that of
Dom0. It is not necessary to perform a page translation byte
by byte, since there is only a need if the edge of a physical
page is reached, but since caching was not involved in our
design, it fits the purposes of measurement.

VIII. DISCUSSION AND RELATED WORK

This research builds on Payne et al. [26]. We introduce
specialised security domains that focus on the detection of
symptoms and mobility schemes. Furthermore, the FVMs do
not have a big a problem for waiting to be scheduled such
as an application would on Dom0. It is hopeful that through
better research into system symptoms, there will be a greater
chance of detecting zero-day malware.

Hypervisor Security: The TCB (Trusted Computing Base)
consists of the Xen hypervisor and Dom0. We have managed to
add security to guests of the Xen hypervisor without dramati-
cally increasing the size of the TCB. A couple of modifications
to the Xen source code were needed in order to allow FVMs
to introspect the memory pages of more than one target
domain. We aim to achieve this same privilege without any
modifications in future Xen releases. The only addition to the
TCB were message receivers running in Dom0 for collecting
symptom messages. Whilst we did not manage to remove
complete reliance on Dom0 in our current implementation,
there is no reason why these message receivers cannot run in
a disaggregated domain as well. We intend to have a dedicated
FVM message receiver running outside of Dom0 in our future
work. Although the Mini-OS FVMs are privileged to inspect
memory of guest VMs, they do not have additional privileges



which can be exploited. If the FVM security software can
be exploited, the underlying hypervisor remains sufficiently
isolated from attack.

Attacks against VMI: It is possible for malware to
alter data structures and their respective pointers within an
operating system. This technique has been shown to defeat
virtual machine introspection techniques [27]. Although this
technique can throw security monitors off course, this also
requires significant patching effort from a malware writer.
If VMs start off in a known good state and are constantly
monitored by FVMs, then this image can be treated as a
baseline. Subsequent changes in system runtime can then be
modelled, and modifications to static data structures or large
number of changes to various entry points can be treated as
symptoms. This solution is likely to generate a lot of false
positives and a solution will be needed to suitably model the
rate of change within a typical image.

Xen Scheduler: We used the SMP credit scheduler for
our tests. It is a work-conserving scheduler included in the
Xen hypervisor. Further research on schedulers is required to
better handle the case of FVMs. There has been previous work
including co-scheduling that pairs a stubdomain with a domU
VM [28], which could help in making sure that there is always
at least one FVM per VM, whilst not encroaching on the
scheduled CPU time the domUs have. Furthermore Cherkasova
et al. provide a comparison of three schedulers in Xen [29].

IX. CONCLUSION

This paper presents a method of creating small virtual
machines to inspect other guest virtual machines in order
to discover symptoms of malicious behaviour. The proposed
techniques involve a modularised architecture which makes
use of Mini-OS on the Xen virtualisation platform. The ar-
chitecture allows the reuse of code with the help of an API
for conducting introspection. The lightweight footprint and
simplicity of the Mini-OS Xen kernel cuts down the regular
OS overhead substantially, making FVMs ideal Cloud security
sensors. The infrastructure is evaluated and pros and cons of
our design decisions are discussed.
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