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Abstract—Cloud providers must detect malicious traffic in and
out of their network, virtual or otherwise. The use of Intrusion
Detection Systems (IDS) has been hampered by the encryption
of network communication. The result is that current signatures
cannot match potentially malicious requests.

A method to acquire the encryption keys is Virtual Machine
Introspection (VMI). VMI is a technique to view the internal,
and yet raw, representation of a Virtual Machine (VM). Current
methods to find keys are expensive and use sliding windows or
entropy. This inevitably requires reading the memory space of
the entire process, or worse the OS, in a live environment where
performance is paramount. This paper describes a structured
walk of memory to find keys, particularly RSA, using as fewer
reads from the VM as possible. In doing this we create a scalable
mechanism to populate an IDS with keys to analyse traffic.

I. INTRODUCTION

The use of encryption has been seen as a major threat to In-
trusion Detection Systems (IDS) for a long time [1]. Once the
packet payloads are encrypted, the currently available signa-
ture based methods of detecting anomalous and harmful traffic
becomes completely futile [2]. Within the cloud, where the
infrastructure is shared between many users, cloud providers
have an obligation to protect the infrastructure and other users
from malicious behaviour. As this architecture accumulates
large amounts of valuable data, the pay-off for a successful
attack, and the damage incurred, could be substantially high.
As a result, there is clear scope for developing technologies
for decrypting data within the Cloud to allow IDSs to protect
its users.

Virtual Machine Introspection (VMI) is a technique used
for viewing, and potentially modifying, the internal state of
a guest Virtual Machine (VM). It has been used successfully
in developing novel security techniques which are tailored for
use within the Cloud, for instance IDSs [3]–[5] and can also be
used for managing cloud resources. VMI can be used to gather
information regarding the VM, for instance its load, the raw
byte stream and with correct traversal: operating system (OS)
structures like the process table. This allows us to generate
many programs to collate and use this information. Another
use of VMI is found in Forensic Virtual Machines (FVMs)
[6], [7]. These are small VMs that use this technique to
find observables that may indicate the presence of malicious
behaviour, for example the bot-net ZeuS changes a registry
value to start at user login [8]. In this paper, we present a

method of using VMI to gather keys to allow the decryption
of data and assist an IDS. There has been suggestions to intro-
duce Introspection-as-a-Service [9], which would allow such
programs. The implementation, and usage, of this technology
can be controversial and must be safeguarded by the rule of
law, consent of the users and contractual obligations.

The focus of this paper is to provide a mechanism to find
keys within memory, using VMI, to pass to an IDS such that
it can analyse its traffic. Current methods are computationally
expensive and require a sliding window of the entire memory
space to find a sequence of high entropy bytes or signatures
[10], [11]. This approach is very expensive when reading
bytes from a live VM, instead we look at how these keys
are stored in memory and provide a structured walk of the
OS’s internal representation. We demonstrate how our method
can be applied to RSA and provide small inexpensive checks
to decrease the amount of interaction, i.e. reading, with the
VM for finding keys. Specifically looking at properties of the
integral components of a private key, for example the length
and entropy, and the relationships between them, derived from
the way keys are generated. We use Apache2, with TLS
enabled, to demonstrate and evaluate our approach.

The paper is organised as follows: we start by introducing
some preliminaries in section II. We then describe the prob-
lems regarding finding keys in section III and show a sketch of
the solution in section IV. Followed by a detailed view of our
method in section V. A sketch of the implementation is pro-
vided in section VI and the evaluation follows in section VII.
We then finish with a discussion of related work, section VIII,
and a conclusion in section IX.

II. PRELIMINARIES

A. Virtualisation and the Cloud

Virtualisation provides an abstraction for the hardware of a
physical host. This abstraction is often called a Hypervisor or a
Virtual Machine Monitor (VMM). This decoupling of physical
hardware to a logical piece of software allows the complete
emulation of an OS through a Virtual Machine (VM) [12]. It
also allows a single host to run numerous versions of different
OSs which share the resources available to it.

Cloud computing is a model that takes virtualisation a step
further, rather than having virtualisation over a single host,
it allows multiple hosts to pool their resources together. A



common use for the Cloud is providing infrastructure as a
service (IaaS) [13]. Opposed to having a set of default OSs that
the user can choose and customise, consumers are generally
able to provide their own images to be hosted for their systems.
This is often beneficial to the customer as they have complete
control over the OS they are using. However, this process
can prove detrimental to the Cloud service provider as their
security is in the hands of their users rather than themselves. If
a user does not update a malware scanner, or indeed if he does
not have one, other consumers could be affected as they reside
on the same network and can aid in the spread of the malware.
This with the pure mass of information collected in this
environment provides large rewards for successful attackers.

B. Virtual Machine Introspection

VMI allows applications to access the runtime state of a
VM, including memory, registers and disks. This enables a VM
with sufficient privileges to access another VM on the same
server [3]. Providing a powerful forensic technique allowing
analysis from outside of a “target” VM. This form of passive
monitoring is advantageous when you wish the application,
carrying out VMI, to remain hidden from the VM itself.

VMI has been used in digital forensics [14]–[16] and for
IDSs [3]–[5] to isolate the forensics functionality from the host
it is monitoring. Its use is widening and libraries are now being
written [15], [17] and can be used to provide introspection-as-
a-service [9].

Whilst introspection is a useful mechanism, knowledge
bases regarding the internal structures of OSs vary in depth and
quality depending on the availability of the source code. For
example the Linux code base is open to the public, thus the in-
ternal structures are known and their use be deduced, whereas
Windows is closed and requires some reverse engineering. The
latter is being continually explored by the digital forensics
community. Volatility is one of the largest open-source system
analysers, managed by Volatile Systems [14]. As VMI works
completely outside of the target VM, it does mean we do
not have access to memory structures using native APIs. This
means a program that uses it must be able to handle different
memory layouts; this is especially difficult with closed source
OSs like Windows.

C. Forensic Virtual Machines

Keith Harrison et al. [6] introduced the concept of an FVM.
An FVM benefits from VMI to observe the internal state
of a guest VM. Particularly looking for potential signs of
malicious behaviour, e.g. unknown changes in the registry, etc.
An FVMs prime objective is to act like a physician within a
virtualised environment: to identify potentially infected VMs,
within a large population, so that remedial action can start. For
example, within the Cloud we can slow down, stop or snapshot
the guest for further analysis. The key difference between the
FVM and general practitioner is its patient base. An FVM can
be part of a much larger neighbourhood of VMs, within the
Cloud, that needs to be monitored concurrently. Each FVM is
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(1): The FVM search module introspects into a VM’s memory.
Fig. 1: The architecture of an FVM.

tailored for a single purpose to reduce its attack surface, thus
if we want many of them, they need to be small.

The structure of an FVM is illustrated within Figure 1, the
architecture consists of three internal components. Due to the
size of the Cloud and the number of VMs to introspect, the
mobility module allows an FVM to move from one VM to
another. This prevents the hypervisor from setting up another
FVM with a different target, efficiently using resources as not
to starve the guest VMs by absorbing more clock cycles. The
search module allows for plug-and-play with different search
strategies, for instance one strategy could look within the
Windows registry, another the process table. For example an
FVM could use VMI to check whether ZeuS [8] had changed
a registry value to make it start at boot. We study how this
module can be used to look within memory to find key material
via a structured walk. This structured walk will reduce the total
clock cycles needed to complete the analysis. The final module
is the notification module: it allows outside communication
and communication within the FVM network. In our scenario
this is the mechanism to report the collected key material to
the IDS, so intrusion detection can take place.

The implementation of FVMs is complex; however Shaw
et al. [7] implemented and tested the performance of an
FVM using the Xen hypervisor [18] and Mini-OS [19]. The
use of paravirtualisation, i.e. whereby the guest VM calls to
the hypervisor (hypercalls) for non-virtualisable instructions,
improves the throughput of an FVM quite substantially.

D. TLS and RSA

TLS is a protocol that enables the use of cipher suites on
network traffic. It is used to encrypt data between two parties
that are communicating whilst it also has the ability to sign
traffic to prove its authenticity. There has been a great move
towards TLS, by default, by web service providers to protect
their customer’s data in transit [20]. The protocol provides
this privacy with a mixture of asymmetric and symmetric
key cryptography. Due to the performance of public key
cryptography, symmetric key cryptography is used to encrypt
the data itself using a session key. This unique key is used for
communication between clients and servers.

The keys used within protocols such as TLS need to be
exchanged such that the recipient, often the server, can decrypt
the data within the message(s). There are three mechanisms for
exchanging keys: 1) using the asymmetric cipher, i.e. the client
encrypts it using the servers public key. If the server is the only
one with the key, only that server should be able to decrypt it;
2) using an Ephemeral Diffie-Hellman key exchange, enabling



each party to derive the key without actually sending it; and
3) using Elliptical-Curve Diffie-Hellman, which generates a
session key based on finite fields [21]. The latter two provide
perfect forward secrecy (PFS), that is if an attacker has access
to the private key, they cannot decrypt communication traffic
as they need the random values used by both parties to
derive the session key and decrypt it. The former however
transfers the session key within the communication, if the
private key is known then the session key can be decrypted.
Our system depends on the former being used, as this allows
the IDS to decrypt the data. We feel this is feasible as at the
time of writing, many websites, including banks still use this
mechanism.

1) RSA: TLS requires an asymmetric cipher to prove au-
thenticity to the client, such that they can sign the response.
RSA is an asymmetric cipher that is well used for TLS
communication over the Internet. This particular cipher is
used with the above mentioned banks. The cipher contains
three main components, a modulus n (the product of two
primes p and q), a private exponent d and a public exponent
e. The modulus and the public exponent form the public
key (n, e) and the private exponent forms the private key.
Operations that use the private key, signing and decryption,
are computationally expensive. This can be optimised by the
use of the Chinese Remainder Algorithm, which requires
access to the original primes to speed up the two processes
[22]. OpenSSL [23] is a library that keeps this information
to optimise the use on high load servers. Our work heavily
concentrates on finding RSA key material within memory.

2) Current Methods of Finding Keys in Memory: The core
applications that gather key material have been in cold-boot
attacks and general forensic [10], [11], [24], [25]. They both,
in a general sense, work on snapshots of a machine’s, virtual or
otherwise, memory. The former concentrates more on recovery
of keys as a cold-boot entails forcefully turning off a machine
to avoid any clean-up of memory. The machine is then either
booted from a USB device to dump the memory, warm-boot,
or the RAM is moved to a controlled machine to boot and
dump the memory. Memory will degrade in this setting as
the transistors lose their energy, thus further reconstruction
is needed. The latter however, particularly in the setting of
Volatility [14] and libvmi [15], is based on snapshots of VMs
or access to live VMs via a hypervisor’s native libraries. Live
access has no need for reconstruction as the transistors remain
set. We concentrate on the recognition of keys within a live
system so we assume no reconstruction is necessary.

T Klein provides a method to find certificates within mem-
ory which has been implemented as a Volatility [14] plug-in
for use by the forensic community for Windows OSs. Volatility
is a python library used for the introspection of memory blocks
or files and can be extended for multiple inputs. This plug-
in allowed Klein to find keys within memory by finding a
signature of the Abstract Syntax Notation (ASN.1) used for
storing RSA private keys, particularly those using PKCS#8, a
generic representation of a private key. This approach uses a
sliding window through a process’s virtual memory to find the

signature of this certificate. Requiring the plug-in to traverse
the entire memory space of a process in order to find a
certificate using a very specific representation. It also assumes
that the cryptographic library does not scrub the ASN.1
certificate after it has generated its internal data structure.
Klein’s approach also calls the OpenSSL [23] command line
tool to verify its findings, which is not suited for a live system.

Another approach for finding keys within memory is finding
portions of high entropy within process’ memory [25]. Entropy
is the measure of the lack of order or predictability of a subject.
In the case of RSA, and indeed most cryptographic ciphers,
randomness is collected to increase the entropy of the key.
The two primes, p and q, are populated with random data and
then incremented or decremented until a probable prime has
been found. This randomness is then inherited by the other
components of the key.

III. DESCRIPTION OF THE PROBLEM

Figure 2 shows the entropy of an Ubuntu 12.04-4 memory
dump of size 512MB. The blue line shows the entropy of
memory using a 2048-bit window, the size of the keys within.
There are only two keys within memory, a key for SSHd and
an Apache2 Virtual Host. The range specified in red shows
where the keys could be based on key entropy (range discussed
in subsection V-C). You’ll notice that the red areas take less
than half of the memory. The sliding window will cause many
false positives without additional checks due to the number of
potential locations.

The brute force approach of using a sliding window is
expensive and can be reduced by a structured walk. Both
methods require a sliding window of the VMs memory such
that over a VM with memory size of vms bytes and a sliding
window of w bytes, vms − w samples must be taken. It can
be reduced by a factor of four if 32-bit rounding were to take
place, however the calculation of entropy still isn’t included.
This method also does not give definitive boundaries, as more
than one piece of information could be in a single red block,
thus the number of false positives can rise.

This sliding window can be very expensive in a virtualised
environment, forcing the controller domain of the hypervisor
to carry out operational tasks as well as enabling introspection
from outside of the kernel. In this paper we present an efficient
method of finding keys in an OS’s memory.

IV. SKETCH OF THE SOLUTION

The computational requirements of finding keys within
memory are high. This is based on looking for a sequence
of high entropy bytes or a signature of a key container. To
identify a sequence of high entropy bytes the application must
read the entire memory space of a guest OS to find these
traits. Forensics tools for virtualisation are often used post-
mortem, i.e. a problem is found, a snapshot is made and
then analysis is performed on that snapshot. This process can
be moved to non-production equipment, for instance servers
that aren’t providing customer services, thus performance isn’t
as important. When using VMI on a live guest, performance



Fig. 2: Entropy of a 512MB Ubuntu 12.04-4 Memory Dump.

becomes a core requirement. Each read from the guest VM,
and each tick of a CPU used takes processing power away
from the customer VMs the virtualised host is providing.

For continuous analysis, in the case of a mobile FVM,
performance is paramount. This is due to all communication
between the guest and the introspector being sent via the con-
troller domain, the entity managing resources within the virtual
environment. With this additional requirement we concentrate
our research on finding RSA keys within memory using a
method that could be plugged into an FVM with performance
in mind [6], [7].

Our work concentrates on two well known libraries,
OpenSSL [23] and GnuTLS [26], used by applications to
provide TLS transport in order to find a more targeted search
algorithm to collate keys from memory. These were chosen
due to their prominence within applications that use secure
communication. The internal mechanisms used for holding
RSA key material are big number libraries. These libraries
provide methods for representing and manipulating numbers
larger than 64-bits. Specifically OpenSSL implements its own
library, BN, whilst GnuTLS uses another alternative, the GNU
Multiple Precision Arithmetic Library (GMP) [27]. Both, BN
and GMP, have a similar internal structure: a contiguous array
of integers and some flags, i.e. is the number negative, etc. As
these numbers have to be able to expand and contract, they are
kept on the heap, within user-space of the process. Although
it is more natural to order the array with the least significant
bytes at the higher end of the array, big numbers reverse this as
to easily allow them to expand. These techniques are common
within libraries that are similar and we believe our method can
be adjusted, with minor modifications, to work with others. For
instance libtommath only uses 28-bits of each integer word,
rather than entire 32-bits, so it can handle overflows better
when bit shifting1.

The use of big number libraries in RSA allowed us to narrow

1https://github.com/libtom/libtommath/blob/master/tommath.h#L81

Fig. 3: Entropy of an Apache2 Process’ HEAP.

the search space of memory quite substantially. As shown
in Figure 2, there is a lot of space where keys can be. The
HEAP however is a lot simpler, as shown in Figure 3. This
illustrates the HEAP of an Apache2 process, in this you’ll see
two small, distinct, areas for exploration. The latter block, at
approximately 3.8 ∗ 104 bytes, is actually where the RSA key
resides. A sliding window over this particular instance still
requires 6 ∗ 104 calculations. We will demonstrate that our
method allows us pin-point the key avoiding boundary issues
generally apparent when using a sliding windows.

The heap is a sequential list of elements within the brk
(the data segment, where the heap resides) such that one
can traverse down using its simple format without the aid
of the memory manager. This header gives more information
regarding the entry, like size. The libraries in question are
optimised to only use as much memory as required, since we
know the length of the key and its components we can filter
the HEAP into segments we deem interesting.

With the basic knowledge of the HEAP and its structure,
we can analyse the building blocks of RSA. These components
have certain properties that can be validated quickly to improve
the detection of key material and save computation whilst
doing so. Specifically, we start by looking at the length of
the components to group possible heap entries, then take
advantage of the way the modulus is generated to find tuples
of n, p and q. The latter is possible as ALL key material is kept
within the certificate to quicken the calculations that use the
private key. To further narrow this we conduct a small, efficient
probabilistic primality check of p and q and only then do we
check the entropy of n.

Completing these tasks reduces the required number of
reads of the guest VM’s internal state, thus reducing its impact
on the virtualised environment. We could argue, however, that
our structured approach revokes some generality as we need
to know the internal structure of the OS itself as well as its
memory allocation techniques. For VMI to be used in more
applications: APIs that wrap VMI for accessing OS specifics

https://github.com/libtom/libtommath/blob/master/tommath.h#L81
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Fig. 4: Using FVMs for finding keys for an IDS.

must be in place, otherwise this places a domain knowledge
burden onto the developer.

V. FINDING KEY MATERIAL

Figure 4 describes the use of FVMs to find keys that can be
passed onto an IDS to allow it to decrypt traffic for analysis. As
described in subsection II-C, each FVM has a search module
which includes the code for conducting a search of memory.
We implement the method suggested in this section in the
FVM. Then, as depicted in Figure 4, the FVM searches the
memory for keys (1). After finding the keys, they are passed
onto the IDS (2) which consequently decrypts and analyses
traffic for anomalous or harmful communication (3). This
section discusses the properties of RSA encryption such that
we can use VMI to find potential RSA keys used within a
process, whilst keeping the total number of false positives
down to a minimum. We do this by describing the tools that are
used for the deployment and implementation of cryptographic
schemes, particularly RSA. We explain where these structures
are kept and how we can analyse these containers to find what
is a key and what is not.

A. Big Number Libraries

Many popular cryptographic schemes, like RSA [28], Diffie-
Hellman [29] and the Digital Signature Algorithm [30] use
long integer modular exponentiation. A key difference with
RSA is that the modulus is the product of two primes, this
allows us to use the Chinese Remainder Theorem (CRT) to
increase the speed of private key operations [31]. Since these
schemes use numbers greater than a 64-bit unsigned integer
can handle, 264, they rely on big number, or bignum, libraries
that provide methods to complete mathematical operations on
an array of unsigned integers. We use our knowledge of the
internal representation of big numbers to generate optimised
checks, i.e. with as fewer reads as possible, for RSA. OpenSSL
[23] and GnuTLS [26] are key libraries that provide an
encrypted channel over a network, including RSA. OpenSSL
has its own, built in, API for big number arithmetic, the BN_*
functions, while GnuTLS uses the GNU Multiple Precision
Arithmetic Library (GMP) [27]. Both of these consist of a
contiguous array of unsigned 32-bit integers as explained in
section IV.

B. Where are the keys?

The array of integers used, as we have mentioned, can
expand thus they cannot be kept on the stack of a process; con-

previous size size data
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64 bits

flags
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Fig. 5: An allocated heap entry in Linux.

sequently the search space decreases substantially as we need
only look at the heap of a process. On a Linux distribution,
this means finding and interpreting the mm_struct structure
for each process. This structure informs the user where the
boundaries are within a process’s virtual address space. The
heap is located in between the two attributes: start_brk
and brk.

The heap itself is managed by the process’s memory man-
agement. There are other allocations libraries like jemalloc
[32], etc.; however we are aiming to target applications that
use the standard allocation provided by glibc. This mechanism
involves a simple doubly linked list, whereby the header
contains the previous entry’s size, the current entry size and
some flags. This is illustrated within Figure 5. The header itself
is only two 32-bit integers in length. Once at the start, in our
case start_brk, we can easily traverse the HEAP without
access to the internal structuring of the memory manager. We
can move to the next element by adding the size to our current
position in memory, allowing fast traversal for analysis.

C. A Structured Walk to Find Key Material

The HEAP Primitive: As the key material is being kept
within the heap, we can iterate through each element and find
interesting features that could be construed as key material. In
order to show this we provide a formalism. Suppose that H =
{h1, h2, . . . , hn} denotes the heap and its elements. The RSA
cipher is generally used with three key lengths, specifically
1024, 2048 and 4096-bits. We denote this by L, where L ∈
{1024, 2048, 4096}

The Modulus: all elements within H are of a particular
length, such that they can hold r bytes of data. The value of
r can be found within the header of the entry. Assume that
the length of a heap entry, hi, is denoted by len(hi). When
dealing with RSA, for any given key length L, the candidate
modulus values reside in the following set of heap elements
with the length L.

NL = {h | h ∈ H, len(h) = L} (1)

The Primes: The modulus itself is the product of two
primes, p and q. These primes are often stored within the
private key as they can be used to speed up signing and decryp-
tion. Signing and decrypting are computationally expensive
operations and when used on public services any optimisations
will allow a greater number of clients to use them concurrently.
The length of a prime is half of the key length, as they both
form the modulus. They are of equal length to make trial
division as difficult as possible, as factoring is only as strong



as its smallest factor [33]; therefore we need to find each heap
element hi that is half of the key length, i.e. len(hi) = L

2 .
This can be used to reduce the search space within the heap.
Particularly for larger keys as these sizes are less common in
practice: BUFSIZ, valued at 1024 bytes, is a common buffer
length for use with reading from the network and files. Primes
can be found in the following set:

PL = {h | h ∈ H, len(h) = L

2
} (2)

The elements in the above sets are in the form of 32-bit
words. We denote the least significant word, of a potential big
number, as lsw(hi) where hi is the entry in the heap H . As
the modulus n is the product of p and q, i.e. n = p × q, the
product of the least significant words of p and q are equal to
the least significant word of n. For heap elements hi, hj and
hk we create a checking function f as follows:

f(hi, hj , hk) =

{
true if lsw(hi) == lsw(hj)× lsw(hk)
false otherwise

(3)
Consequently lsw(n) = lsw(p)× lsw(q) then f(n, p, q) =

true.
Using Prime Numbers 2, 3, . . . , 23 reduces the search

space by 83.61%. Consider the prime numbers 2, 3 . . . , 23.
If we multiply them we end up with the largest multiplication
of all consecutive prime numbers which fit within a 32-bit
word, i.e. λ = 2 × 3 × . . . ,×23 < 232. For any candidate
prime number of the heap, if we calculate the remainder of
h by λ, i.e. h = λ × q + r and if r has a factor of 2, 3,
. . . , 23 then clearly h is not a prime number. This simple test
has two advantages. Firstly dividing a big number by a single
32-bit number is very fast. Secondly using this method will
filter out 86.61% of possible numbers. To see this assume that
for i ∈ I = {2, 3, . . . , 23}, Ai denotes the event of h being
a multiple of i. Then the probability of h being a multiple of
2, 3, . . . 23 is the same as P(A2 ∪A3 . . . ∪A29) which using
the inclusion-exclusion principle is:∑
i∈I
P(Ai)−

∑
i<j∈I

P(Ai ∩Aj)−
∑

i<j<k

P(Ai ∩Aj ∩Ak) . . .

For A2 half of the numbers are multiples of 2, so P(A2) =
1
2 ,

similarly P(A3) = 1
3 , the following probabilities can be

computed similarly. The above sum can be calculated as
83.6%. A parity check as well as the above function is denoted
as isp(hi) where hi is the heap element to be checked.

Entropy: A final characteristic of n is that it has compar-
atively high entropy. This is due to how the primes p and q
are generated. They are formed by gathering random data and
populating the big number array, followed by incrementing
or decrementing until a safe prime is found [34]. This can
narrow substantially the search space as quite often pieces of
memory will store textual information, or at least data with
a low entropy. For each key length we have a maximum
and minimum entropy value, denoted as Emin

L and Emax
L ,

which can be pre-calculated based on test certificates. For our
implementation we used Shannon’s entropy as it is commonly
used in this context. If X is a stream of characters produced

from characters {x1, x2, . . . xn}. Then Shannon’s entropy is

calculated by E(X) = −
n∑

i=1

p(xi)logbp(xi) where p(xi) is

the probability of xi appearing in X . In our case there are
only 256 possible values for a byte; this allows us to calculate
p(xi) as we need only count how many times a particular byte
appears within the window.

The entropy of a heap element h is calculated by the method
E(h). With this we can now have a set of potential (n, p, q)-
tuples, as show in (4) found in Figure 6, we denote this set by
GL. The only remaining pieces of information is with regards
to the private exponent d, and the public exponent e. e is used
along with the two primes in order to find the multiplicative
inverse that derives d. This value however is usually made
small enough to reduce the speed of encryption, and large
enough to prevent some feasible attacks [35]. It is also made
constant in a few libraries that implement RSA, and can be
part of standards [36].

GL = {(n, {{p, q} | {p, q} ∈ [PL]
2, isp(p), isp(q)}) |

n ∈ NL, E
min
L ≤ EL(n) ≤ Emax

L , f(n, p, q) = true)}
(4)

Fig. 6: Partial key generation material.

The Public Exponent This provides us with the basic RSA
key material used when finding the multiplicative inverse to
derive a private exponent, d. The public exponent, e is often
65537 and has been omitted from the formalism. In order to
maintain the security and keep the speed of decryption and
verification, implementations of RSA generally use the value
65537 for their public exponent, e. It is common in OpenSSL,
GnuTLS and others to use this value by default, the user
actively has to specify a different value. 65537 is used as it
is a Fermat prime, specifically F[4], and is chosen as it makes
the modular exponentiation faster, whilst being large enough
to decrease the vulnerabilities caused by lower primes. This
gives us a final set of candidate private keys from memory.
With this assumption, the private exponent can be calculated
externally.

D. Candidate Private Exponents

Depending on resources one could return the values within
GL and have the command and control, an external server, to
handle the overhead of generating the actual key. This would
involve the assumption of e being 65537. One could also return
all values of candidate d for verification; however there are few
characteristics for this value: DL = {d | d ∈ NL, E

min
L ≤

EL(d) ≤ Emax
L } To narrow this set we can take advantage of

the two primes from the key generation. The private exponent
is computed as the modular inverse of e such that: d × e =
1 + k × (p − 1) × (q − 1). However, we can say that each
prime minus one has a number of trailing zero bits: p− 1 =
p′ × 2i, q − 1 = q′ × 2j , such that, for both primes, p′ and q′

are odd and i and j are greater than 0. 2i|j acts as a bit shift to
the left, which means there will be a minimum of i+j trailing
zero bits. k can also be noted in the same manner; however



Input: A set H that contains elements of a process’ heap and a
number L, which represents the key length.

Output: A set of three tuples containing RSA key material
(public modulus, and two primes).

1 NL ← ∅
2 PL ← ∅
3 GL ← ∅
4 begin

/* filter for moduli and primes */
5 for h ∈ H do
6 if len(h) = L then
7 NL ← NL ∪ {h}
8 else if len(h) = L

2
then

9 PL ← PL ∪ {h}
10 end

/* combinations of key material */
11 foreach {(n, {{p, q} | {p, q} ∈ [PL]

2}) | n ∈ NL} do
/* keep those tuples where n = p . q

could match */
12 if lsw(p)× lsw(q) = lsw(n) then
13 GL ← GL ∪ {(n, p, q)}
14 end
15 end
16 foreach {(n, p, q) | (n, p, q) ∈ GL} do
17 if not isp(p) then
18 GL ← GL \ {(n, p, q)}
19 else
20 if not isp(p) then
21 GL ← GL \ {(n, p, q)}
22 else

/* is entropy in range */
23 if Emin

L > EL(n) or EL(n) > Emax
L then

24 GL ← GL \ {(n, p, q)}

25 end
26 return GL

27 end
Algorithm 1: Finding Key Material

the shift is unknown and can provide no information to our
calculation, thus we can only determine the minimum number
of trailing zero bits. We can now rewrite this as: d× e− 1 =
k×p′×q′×2i+j . If we were to calculate the LHS, once again
assuming e was equal to 65537, using each of our candidate
d values, our answer must have at least i + j trailing zeros.
As a result, we can drop any candidate private exponents that
do not have these trailing zeros.

VI. SKETCH OF THE IMPLEMENTATION

We define our method in Algorithm 1. Here you can see
the steps defined in our method above. Firstly, between lines
5-10, we store elements that are of the correct length for
key material. The modulus values are the length of the key
length and the primes are half of that. Following this we cross
multiply each candidate prime’s least significant word, this
will be equal to the least significant word of the modulus
(lines 11-15). We then narrow this list by removing elements
where the primes are not considered prime (on lines 17 and
20, by our method discussed in subsection V-C), and followed
by an entropy check at line 23.

VII. EVALUATION

In order to evaluate our methods we wrote an application
that could be used to form the search module of an FVM. The
application completed the tasks as per subsection V-C.

A. Environment

For these tests we used two machines:
1) A MacBook Pro (Late 2013) with a quad-core Intel i7 and

16GB of memory. This machine provided our platform
for virtualisation using VMWare Fusion2.

2) A HP EliteBook with a dual-core i7 and 4GB of memory.
This machine was used to create traffic using siege [37].
This traffic allows the services, on the virtual hosts,
expand as the load increased and thus made more use
of a process’ heap.

Rather than managing a hypervisor like Xen [18] and using
the live features of libvmi [15], we chose to find keys within
snapshots of a VM. Libvmi works on memory snapshot files
in the same manner as a live guest machine. The hypervisor
used was VMWare Fusion, we used this as we could automate
the creation and restoration of snapshots, and also automate
the upload of key material using their command line tools.

The VM was an Ubuntu 12.04-4 Server with 512MB of
RAM and two of the i7’s cores. 512MB was used as we needed
to snapshot each iteration of a test. Any larger and we would
have come across storage issues. The VM was then updated
such that all, packaged, security and performance upgrades
had been applied. Initial tests are mainly aimed at the use
of Apache HTTPD [38], a common web server used today,
and two different SSL/TLS libraries (OpenSSL and GnuTLS).
These were also installed and configured, particularly their
Apache HTTPD modules (mod_ssl and mod_gnutls).

B. Upper and Lower Bounds for Key Entropy

As we mentioned in subsection V-C, RSA keys have high
entropy. This is due to the way the primes, p and q, are formed.
The acquisition of random data from a source populates
the buffers and then are incremented/decremented to find
a probable prime. To determine this level of entropy that
characterises RSA key material, we generated 2000 RSA keys
in parallel for all key lengths (L). These were created using
GNU Parallel [39] and the OpenSSL command line tools.
We parallelised the creation as each command would provide
randomisation for the subsequent and concurrent commands.
The default value for the public exponent, e, i.e. 65537, was
used as it is a common choice without specifying otherwise.

The resulting keys were then parsed to determine the Shan-
non entropy of the private exponent and modulus of the key
with length L. The entropy is displayed in Table I and define
Emin

L and Emax
L used within checks for the RSA modulus,

n. These keys gave us the entropy range that we believe
characterised the private exponent and the modulus of RSA.
In order to test this we generated a new set of 10000 keys,
in the same manner as before, and verified this hypothesis.

2Available: http://www.vmware.com/products/fusion

http://www.vmware.com/products/fusion


key
length

entropy

Emin
L Emax

L

1024 4.36853729 4.70040432
2048 4.81762365 5.11726980
4096 5.16982622 5.34433150

TABLE I: The Shannon entropy for keys of different length.

Our minimum and maximum values gave a 0.09% error in the
case of 1024-bit, 0.01% in the case of 2096-bit and 0.04% for
4096-bits. The tests themselves, i.e. the ability to find keys
within a virtual hosts memory used another unknown set of
2000 keys for each key length.

C. A Single RSA Key

A small business may only serve one website from their web
servers so we designed this test to emulate this characteristic.
Our instance of the Ubuntu VM contained a single Apache
HTTPD virtual host, serving clients using a 2048-bit key.
We ran 200 tests for each of the two libraries that we were
analysing, GnuTLS and OpenSSL. Each test had a different
RSA key pair, randomly selected from our library of RSA
keys.

Apache HTTPD spawns new processes to handle greater
loads on the system be able to spread over more of the servers
resources. This meant we found many duplicate keys as each
process contained the same configuration obtained from the
parent process. Removing these duplicates our program man-
aged to find all the keys, using both libraries, within memory
with no false positives. We were able to use our derived keys
to decrypt data encrypted by their original counterparts.

D. Multiple RSA Keys of the Same Length

Our second test was aimed at emulating a web host. A web
host may allow its users to upload their own keys which means
their servers will contain references to multiple keys within
the system. In order to see if there would be any conflicts or
false positives we needed to find multiple keys in a single
process. This may happen as there is more material with
similar characteristics that could combine and seem valid using
our checks. This test required four keys of 2048-bit length and
therefore four virtual hosts (using different ports). Siege [37]
was amended to take these additional URLs into account when
bombarding the services with traffic. This time we looked for
500 of our 2048-bit length keys, randomly selected from our
library, making 125 iterations.

Once again, Apache HTTPD expanded in order to maintain
performance for its clients whilst maximising the use of each
processes’ resources to handle each request. Our tool found
all keys for both libraries with no false positives.

E. Multiple RSA Keys of Different Lengths

The application we have written, in the form of an FVM’s
search code, can only look for one key length at a time. This
allows a search to concentrate on looking for a single length
of key, using standard and statically compiled buffers: in turn
optimising the program for that key length. All key lengths

have the same process placed upon them for detection, there
are few variables that change, particularly the lengths of p, q
and n and therefore the minimum and maximum entropy of
n.

Vendors may allow clients to upload their own SSL/TLS
certificates, these need not be of the same length, as per the
previous test. To show this we repeated our previous test to
allow 500 randomly selected keys, 125 iterations, of different
key lengths (1024-bit, 2048-bit and 4096-bit). For each test,
we ran each version of our program on the resultant snapshot
to find the keys within. Removing duplicates, we found all
keys of all lengths and found no other potential keys.

F. Other Applications

Our tests have focused upon a well used web server, as
this may be seen as the main entry point for attack via SQL
injections as they are generally public facing. Which in turn,
makes them more likely to have rules assigned to their traffic
within an IDS. To test the validity of our approach we tested
it against other applications. Particularly of note we found
the RSA key from the SSH daemon running on the Ubuntu
instance in all tests.

Other, more cursory, checks were made on applications
that use SSL/TLS via these two libraries using the RSA
asymmetric cipher. Our program worked upon services that
used nginx [40] and node3. This was due to them directly
using the OpenSSL library.

We also believe that the Apache Tomcat server, a Java web
server, would also be open to this analysis when using Tom-
cat’s Native Library, as it uses OpenSSL via the Java Native
Interface (JNI). However Java does not use the standard UNIX
brk for heap allocation and instead uses its own allocation
mechanism via the JVM.

G. Performance

To illustrate performance we show the number of reads,
from the VM, that is necessary to gather key material in
Table II. There are three processes, two Apache2 processes and
an SSH daemon. The first Apache2 process contains four RSA
keys on different virtual hosts, the others only have one. In
order to find signatures using Klein’s approach [11] or indeed
the sliding window of entropy one must read the total heap
size, minus the expected length of the certificate or the length
of the key. Iterating through heap elements reduces the number
quite substantially.

VIII. DISCUSSION AND RELATED WORK

A. Cross Compatibility

There are of course multiple platforms that need to be
supported so questions into the feasibility of handling them
all is up for discussion. For VMI to succeed, efforts need to
be in place to create wrapper APIs to navigate these common
features, like the process table, raw heap elements and file
descriptors. This is a reverse engineering task for some OSs,

3Available: http://nodejs.org

http://nodejs.org


Process Name Heap Size
(in bytes)

Number of
HEAP

elements

Candidate
Moduli

Candidate
Primes P is Prime? Q is Prime? Entropy

Checks
Total # of Reads

(in bytes)

(1) Apache2 937984 6776 28 37 7 7 7 30948
(2) Apache2 897024 6110 5 7 1 1 1 25000
(3) SSHd 21000 703 5 10 1 1 1 3384

(1): An Apache process with four RSA Certificates (three duplicates found)
(2): An Apache process with one RSA Certificates
(3): An SSHd service running with an RSA Certificate

TABLE II: The number of reads necessary to find keys using Algorithm 1.

but much work has been completed on the structure of some
Windows instances for use with Volatility [14]. Libvmi starts
by finding the OS’s core kernel structure allowing applications
to traverse down and find information; it would be unwise to
repeat this work.

Our approach allows for traversal of a Linux distribution,
using glibc’s native heap management. The default allocator
in most cases for applications. There are others including
Lockless4, Google’s tcmalloc5 and jemalloc [32] for use within
applications, as well as the Windows HEAP allocator. All
of which will have different structures to navigate through,
but when VMI is used within the Cloud we need optimised
searches to prevent starving the guest VM of resources, at least
for continuous monitoring which the FVM attempts to do [6],
[7].

B. Controversy

This technology is open to abuse as it can be used by anyone
who has access to the raw memory of a VM. Ensuring correct
usage of this technology by Cloud providers is an area for
experts in privacy and law. Further work is required to create
a framework for the legitimate and legal use of this technology.
This is an area which is out of scope of this paper and remains
open for future research.

C. A Different Public Exponent

It is unlikely that the RSA key uses a different value
for e, however this is still possible. Particularly for those
running older versions of cryptographic libraries or even if
the certificate creator specified a value. In the former case,
historically e could have been any of the previous Fermat
numbers, F[i] where 0 ≤ i < 4, i.e. 3, 5, 17, 257. The
latter gives the creator the ability to use any number where
1 < e < φ(n) and gcd(e, φ(n)) = 1 (coprimality) applies.
This means e has no real distinguishing features that can be
ascertained without a big number library built into the FVM,
which would increase the footprint of the sensor. We cannot
look for a specific heap length as this may differ. We do
however have the candidate private keys. This means if we
report both GL and DL, we can brute force the historical
case.

In either case our tool may give an indicator that some
RSA encryption is going on within the processes, virtual

4Available: http://locklessinc.com/
5Available: http://goog-perftools.sourceforge.net/doc/tcmalloc.html

address space. GL on its own is not enough for encryption or
decryption, we need to know the values of the private exponent
in order to continue; therefore we need to know e as it is used
to derive it.

IX. CONCLUSION

We present an algorithm for a structured walk through a
VM’s memory to find RSA keys. The use of VMI can be
quite expensive, particularly since there is a large semantic gap
between the raw representation that VMI provides and that of
native OS APIs. Our method addresses this by carrying out a
structured walk over key elements within memory reducing the
interaction between the application that is looking for keys and
the guest VM that is being introspected. Iterating the raw heap
and implementing small checks allow for a steep reduction in
potential key material, thus data can be ignored.
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