
Opening the Black-Box of Model Transformation

John T. Saxon1, Behzad Bordbar1, and David H. Akehurst2

1 University of Birmingham, Birmingham, UK
{ j.t.saxon, b.bordbar }@cs.bham.ac.uk

2 itemis AG, 44536 Lünen, Germany
dr.david.h@akehurst.net

Abstract. The automated execution of model transformation plays a
key role within Model Driven Development. The software that executes
a transformation, commonly known as a transformation engine, receives
the meta-models of the source and destination, and a set of transforma-
tion rules as input. Then the engine can be used to convert instances of
the source meta-model to produce a destination model. Transformation
engines are often seen as black boxes. In order to be sure of the cor-
rect execution, it is crucial to understand how a transformation engine
executes a given transformation. This paper presents a method of cap-
turing and analysing the activities carried out within the transformation
engine by elaborating on existing tracing mechanisms used by existing
engines. We compare the tracing mechanisms involved in four popular,
rule-based transformation frameworks and highlight their shortcomings.
A new trace meta-model is presented to deal with some of these short-
comings. These processes can be applied to all existing frameworks; as
a proof of concept we have extended an existing traceability framework,
based on our earlier work, to implement these mechanisms.

1 Introduction

The execution of model-to-model (M2M) transformations is often viewed as a
black box process. Transformation engines such as the Epsilon Transformation
Language (ETL) [16] and the ATLAS Transformation Language (ATL) [15] re-
quire the meta-models of the source, destination and a set of transformation
rules as input. Then a transformation engine, behind the scenes, automatically
executes the rules and converts a source model to generate the destination model.
Even during testing and verification, all existing research focuses on correctness
of rules, while treating the transformation engine as a black-box that is assumed
to execute correctly. One exception to this “black-box” routine is the process
of tracing [1, 9, 18]. Traceability can be supported in transformation engines
and gives access to the linkage between source and destination models estab-
lished by a transformation execution [18]. To the best of our knowledge the first
tracing mechanism, within non-graph based transformation engines, was imple-
mented and used by UML2Alloy [21] through the Simple Transformer (SiTra)
[2]. UML2Alloy produces Alloy models from a UML class diagram and OCL



statements via a transformation. In Shah et al. [21], the transformation trace
was used to convert a counter example produced by Alloy back to UML.

This paper is based on our study of four model transformation frameworks:
ATLAS Transformation Language (ATL) [15], Epsilon Transformation Language
(ETL) [16], Operational Query/View/Transform (QVT-O) [18], and the Simple
Transformer [2]. We have identified a number of shortcomings of the existing
frameworks with respect to traceability mechanisms implemented within them.
In this paper we focus on three issues: orphan objects, loss of information re-
garding the ordering of execution and the dependencies between the rules. These
shortcomings and their adverse effects, which are common to most frameworks,
are described with the help of well-known examples. Then we explain a modifi-
cation to the design of transformation engines that can eliminate these deficien-
cies. We present an implementation of the design by extending SiTra. We also
describe the changes required to modify ETL to compliment the design. This
is to show that other engines can adopt our design easily. Finally we evaluate,
the approach by mapping a relational database to Apache HBase [22], a NoSQL
database, via a non-trivial transformation. This transformation is different from
most transformations specified on the relational databases as both the data is
migrated and the schemas are mapped. In particular we report on the execution
of the transformation on the so-called employee database provided by MySQL.
This dataset contains four million rows over six tables and has been successfully
transformed to HBase.

This paper is structured as follows: in section 2 we explain our preliminaries.
Section 3 provides some more detail with regards to traceability within M2M
transformation. We then illustrate the shortcomings in section 4. In section 5
we present a summary of our solution and in section 6 we fully describe our
new version of SiTra. In order to evaluate our work, we present a case study in
section 7, specifically looking at transforming a non-trivial model of a relational
database into HBase [22] (a NoSQL database). Followed by a couple of important
points regarding how this can be implemented within ETL section 8. We then
display the current related work in section 9 and conclude in section 10.

2 Preliminaries

2.1 Model Transformation Frameworks

Model transformation software tools, commonly known as model transformation
frameworks, are used to execute M2M transformations [2, 7, 15, 16, 18, 24].
These tools use a wide range of technologies and differ in the degree of support
they provide and their complexity. Some model transformation frameworks have
strong GUI support for programming, support of persistence and management of
models, re-factoring checking, etc. However they all support the core function-
ality depicted in Figure 1 [8]. Each model transformation framework requires
meta-models of both the source and destination and a set of transformation
rules as input. Then the framework will execute the rules on an instance of the



transformation
rules

meta-model
of source

meta-model
of destination

transformation
engine

instance
of source

instance
of destination

conforms to conforms to

transforms

reads

executes

writes

refers refers

Fig. 1: An Overview of M2M Transformation

source meta-model to produce an instance of the destination meta-model. In this
paper we focus on this specific core functionality.

2.2 SiTra

The Simple Transformer (SiTra) is a Java library that supports the above core
functionality. Produced in 2006, it has been used and modified by various groups
in numerous projects and tracing activities. Among others, SiTra is used in
UML2Alloy [21], AC2Alloy [13], SD2Alloy [3], OWL-S to BPEL [4], state ma-
chines to VHDL [26] and sequence diagrams to coloured Petri nets [5]. The
emphasis of SiTra, although originally educational, is on using Java so that de-
velopers can execute rules in lightweight frameworks. The Java implementation
is available online3. There are also implementations of SiTra in C# and Python.

1 public class ClassToTable implements Rule<Class, Table> {
2 public boolean check(Class source) {
3 return true; }
4

5 public Table build(Class source, Transformer transformer) {
6 return new Table(); }
7

8 public void setProperties(Table target, Class source,
9 Transformer transformer) {

10 List<Column> cols =
11 transformer.transformAll(source.getAttributes());
12 target.setColumns(cols);
13 ... } ... }

Fig. 2: A rule for transforming a Class object into a Table object.

The framework itself defines two interfaces: a) Rule; and b) Transformer.
The Rule provides an interface to create a particular output given an input
and comprises of three simple methods that map to the guard, the instantia-
tion phase and the binding phase of a M2M transformation. The Transformer
3 http://baserg.github.io/sitra

http://baserg.github.io/sitra


interface gives the developer the bare essentials for completing an actual M2M
transformation. The prime focus of SiTra is the simplicity of writing rules in
an imperative language without a need of specialised tool knowledge. Figure 2
shows the popular transformation of an object orientated class to a relational
table. The interface of a rule lends itself to the standard three operations within
all M2M transformation engines.

1. The check method, line 2, is the guard of the rule, i.e. it determines whether
the rule is applicable for the given source object.

2. The build method, line 5, instantiates the target object for the source that
it relates to.

3. The setPropertiesmethod, line 8, sets the attributes of the resultant target
object; from here one may call other transformations to complete the final
model.

For further examples we refer the reader to the tutorial section of footnote 3.

3 Traceability within Model Transformation

Traceability is a technique for keeping track of rule invocations [18]. It has been
used in many applications and has been discussed at length as an important
requirement [6, 11, 19, 23, 25, 27]. For a survey of traceability see "Survey of
Traceability Approaches in Model-Driven Engineering" [12].

The trace instances are stored as a three tuple: (A,AtoB,B). This indicates
for each transformation of the source input A, using the transformation rule
AtoB, the target output B has been created. Thus any other attempt to rerun
this specific rule with the same source, the same output will be returned. This
happens within popular transformation tools such as the ATL [15], QVT-O [18],
the ETL [16] and SiTra.

There are however two levels of traceability: a) internal; and b) external as
defined by [14]. Internal traceability is a private mechanism used within a trans-
formation engine. It is used to trace what outputs are generated by what inputs.
As this is internal, the API is private so the actual trace cannot be persisted and
therefore is lost once the transformation is completed. ATL [15], Xtend [10] and
Eclipse’s implementation of QVT-O follow this mechanism. An external trace
however, remains after the transformation has been completed. This enables its
users to persist, or use the trace for further analysis and transformations. SiTra
and ETL provide a linear trace of what rules and inputs have created what
outputs.

4 Challenges of Tracing in Model Transformation

4.1 Orphans

Orphan objects are objects that are created within the M2M transformation but
are not recorded within the trace. In hybrid/imperative engines like ETL and



SiTra it is possible to use the new keyword to create objects within the rule itself
whilst not as part of the definition. Hence orphans are not accounted for within
the trace, meaning if one were to attempt to find the source of this object there
is no link internally or otherwise.

To see this, consider the well-known example of mapping object orientated
models to relational database. This example used by Epsilon’s own OO2DB ex-
ample4 the rule Class2Table has a conditional statement to determine whether
it requires a foreign key to reference a parent table. Here it will create a Column
and a ForeignKey object; neither of these are recorded within the trace due to
the use of the Java allocation and not by the transformation engine.

Of course, in the above example, the ETL code can be re-factored to avoid
using this keyword by using the language’s ability to implement inheritance
between rules. This would entail three rules: a) an abstract rule containing
the basic Class2Table transformation without the if statement; b) a concrete,
empty, rule for Classes that do not extend another; and c) another concrete rule
for Classes that do, which extends the abstract to include the new elements for
the foreign key.

In the case of SiTra, due to the restrictions placed upon in Java, the definition
of a rule must only have one input and one output, i.e. Rule<Input, Output>.
A fix for this could be the use of tuples as the Output, for example a Pair<X,Y>
or Triple<X,Y,Z>.

The two solutions we provide here do not stop the developer from using the
new keyword and both can increase the complexity of the rules themselves. It
is not possible to remove the new keyword entirely. As a result, there is a clear
scope in modifying the execution engines within the transformations frameworks
to take good care of the orphans.

4.2 Ordering of Rule Execution

For the maintenance and debugging of a M2M transformation, the developers
need to recreate the transformation. Often when a set of transformation rules is
executed, there is a possibility that they are executed in a different order. This
change of order can be because of the low-level implementation choices such as
how a collection is implemented or details arising from the scheduling within the
execution environment. To demonstrate the variation in the order of executing
rules consider the OO2DB example used by various rule engines.

Suppose R1 and R2 represent the two rules that map classes and attributes
to tables and table columns, respectively:

1. The Class is associated to a collection of Attributes. The overall transfor-
mation requires the ClassToTable to transform the attributes during its
binding phase to generate the columns and assign their parent to the re-
sultant Table object. However not all iterators iterate objects in the same

4 https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.
epsilon.examples.oo2db

https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.oo2db
https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.oo2db


Class Table

Attribute Column

R1: ClassToTable

R2: AttributeToColumn
1
*

1
*

Fig. 3: A sample of rule dependencies.

order of which they were added. A HashSet in Java for example provides no
guarantees as to the iteration order of the set. Thus a second execution may
result in a contrasting order of elements.

2. The Starting Object: The item that kicks off the transformation may also
change the resultant model. Given a Class Person with three attributes,
name, age and height one may not assume the resultant transformation
starting with ClassToTable would be equal to one starting with the age
attribute using AttributeToColumn. If the AttributeToColumn were to set
an order attribute within the Column it creates using a global variable which
attribute is transformed first makes a difference to the final model.

To study the execution of the transformation it is essential to capture the
correspondence between the source and destination elements as a part of tracing.
In addition, we propose existing tracing mechanisms to be extended so that the
ordering of the execution of the rules can also be captured. This would allow the
developers to study the transformation, using the execution traces, and hence
know in what order the rules are executed.

4.3 Rule Dependencies

Consider the example in Figure 3, which involves two dependent rules, R1 and
R2. The execution of the transformation via ETL consists of two stages. The
first step, initialisation, matches each rule to a specific source model element
and creates the target elements. For example if the source meta-model consists
of one class (c1) associated to five attributes (a1, . . . , a5), R1 is executed once
on the class to produce the table and subsequently R2 is executed five times
to produce the columns. Once the destination objects have been created, the
second phase, called binding, runs the body of the rule on the objects that have
been created. This part sets properties and creates the associations between
the, currently disconnected, destination model elements. This is the same for
ATL and QVT-O. The procedure for SiTra however is slightly different. All
rules are called lazily, i.e. objects are created when they are called by parent
transformations and not before. R1 would iterate through the classes attributes
to call R2 to retrieve columns and would bind them to its table when instructed.
Since ordering of the source is arbitrary, it is possible that an attribute object
is processed first by R2. This would result in starting the transformation on the
attribute and that rule transforming the class that is associated to it, i.e. the



execution of R1 on the parent class. Then from R1 the remaining attributes are
transformed, i.e. the four remaining executions of R2.

A linear trace dictates what was created in relation to the execution of the
instantiation phase. For instance a trace T := t1t2 . . . tn explains that the trans-
formation t2 was instantiated after the transformation t1 and that is when the
targets were created. However it ignores the nested nature of a model transfor-
mation. The links between rules are lost, i.e. we don’t know what rule depends on
the output of another. Did, for example, t1 require the results of t3, or in imper-
ative languages did t1 transform the source of t3 to get the results. A model
transformation is a graph and this graph is lost within the standard trace.
Using our example the output of R1(c1) invoking [R2(a1), R2(a2), . . . R2(a5)]
may not be the same as R2(a5) invoking R1(c1), which subsequently invokes
[R2(a1), R2(a2), . . . R2(a4)]. In frameworks where a developer may have a global
state: it must be part of the engine to assume there is one.

Using M2M transformations to assist in a software development process, i.e.
partially generating design models from architecture models, architecture models
from analysis models, or generating tests from requirements, would require that
the traceability be retained for auditing reasons. This is especially true for safety
critical applications and in general compliance matrix generation. There is a
clear scope for identifying methods of capturing the ordering of execution and
inter-rule dependencies for assisting load balancing, profiling and validation.

5 Sketch of the Solution

In the previous section we have outlined some of the shortcomings of the exist-
ing tracing mechanisms in use within M2M transformations. To summarise, we
extend an existing framework to deal with:

1. Capturing the nested nature of a transformation
2. Capturing rule dependencies; and
3. Capturing orphan objects created within the transformation.

Our solution involves a new meta-model to capture more information re-
garding the internals of a M2M transformation and the use of dynamic proxy
classes to capture orphan objects. The suggested methods are independent of the
model transformation frameworks and with minor alterations can be adopted by
all mainstream frameworks. We explain parts of the solution briefly and then
demonstrate, by case study, using a non-trivial example of transforming a rela-
tional database to HBase.

6 SiTra

6.1 Capturing Rule and Transformation Dependencies

The Simple Transformer (SiTra) is an imperative Java implementation of a M2M
transformation [2]. It provides two interfaces that can be used to create a trans-
formation engine and the rules for it. Additionally, the bundle comes with an



engine that can be used out of the box. Seyyed M. A. Shah et al. amended this
to add traceability [21]. However this, like others, has all of the issues we have
discussed in the previous section regarding traceability. In this section we will
discuss the changes we have made to solve these issues.

We have already discussed the initialisation and binding phases within M2M
transformation engines. In SiTra the initialisation phase is synonymous to the
build method and binding is the setProperties method; however the schedul-
ing differs from more declarative engines as they are called lazily rather than
upfront. These two are distinct as they allow nested transformations. If you
were to call a transformation which is dependent on itself, the initialised objects
need to be available to the lower transformations. For instance the transforma-
tion of an Attribute, from a object orientated (OO) model, to a Column, from
a relational database view, would require access to the newly transformed Table
to set its owner. Without this we would have an infinite loop. We illustrate this
inter-rule dependency with our ClassToTable rule, shown in Figure 2 and with
a cut down AttributeToColumn rule shown in Figure 4. Both transformations
call upon each other in order to set references.

1 public class AttributeToColumn implements Rule<Class, Table> {
2 public void setProperties(Column target, Attribute source,
3 Transformer transformer) {
4 Table parent = transformer.transform(source.getParent());
5 target.setParent(parent);
6 ... } ... }

Fig. 4: An example of an inter-rule dependency.

Whilst exploring this we also found that SiTra would only transform a source
object, A, once. This was because another structure is being queried within the
engine, a cache. However the source object was used as the key of the map
(Map<Source, Target>). This behaviour was found in ETL as well. Using the
equivalent() method or ::= operator seemed to return the first item within
the transformation trace. You were able to transform a source object multiple
times but if a later match was required a manual filtering of transformed objects
is needed. Here we found the internal tuple needed to be amended. The map
(A,AtoB) → B uses the source object, A, and the rule, AtoB as the key, this
allowed us to request any transformation of A given a rule with ease.

The largest issue we have found within transformation traces is the verbose-
ness of the trace itself. A lot of information is lost when these elements are
created. The current state-of-the-art provides a chronological list of rules; we
never get to see the dependencies between rules and transformations. ETL uses
an equivalent structure as SiTra’s ITrace interface [21], inferred from the QVT
standard [18]. In which is contained the tuple as described in section 3. This tuple
does not take into consideration the nested nature of a transformation, and only



caller 0..1
recalled 1

dependencies 0..*

rule 1

Rule

S,T

«interface»
TraceableElement

Invocation

- source: S
- target: T

S,T

NestedInvocation

orphans: Collection<?>

S,T

CachedInvocation

S,T

Fig. 5: A new meta-model for a traceable model transformation.

concerns the instantiation phase on the first run. It may also be important to
see what transformations actually call the build() method and which have the
object returned from the transformation trace. Fig. 5 shows the new transfor-
mation trace within SiTra. Here we have illustrated new types of trace element.
Invocation is the equivalent of the previous ITrace, it simply contains the
source, target and the rule responsible. This alone can provide the current state-
of-the-art. We have introduced two more types of traceable element within SiTra:
a) NestedInvocation; and b) CachedInvocation. These provide more detail to
the actual internals of the transformation. The former provides the same informa-
tion as the standard however contains two more elements: a) the calling transfor-
mation trace element (if applicable); and b) the trace elements generated because
of the current transformation. The latter simply provides the trace element that
represents the first run of the transformation. In order to maintain this list, and
to reduce the effect on performance by traversing it, we amended the internal
cache once more: (A,AtoB) → (B, TraceableElement). Using this latest imple-
mentation we can now see that a source element, A, and a rule, AtoB, returns the
target object B and is referenced by TraceableElement. This can be simplified
further as the TraceableElement includes B: (A,AtoB) → TraceableElement.

Our meta model provides solutions to retain the order of execution of trans-
formation rules and the ability to recreate the transformation. This is provided
by the nested nature of our meta-model as it explains what rules are completed
and what invoked them. The capability to find the actual binding phase, op-
posed to a recollection, is provided by the new cached invocation type. Allowing
the user to recreate the situation at the time of creation. This cached invocation
aids in providing a graph of rule dependencies.

6.2 A Dynamic Proxy to Catch Orphans

The process of creation, specifically the binding phase, involves invoking mutator
methods to change the state of the destination object. These setters are often



passed new objects that need to be traced, particularly in SiTra, newly allocated
objects. In order to catch these orphans we need to intercept allmutators to check
to see if the additional objects are within the trace. For example, when adding
a foreign key to a child table, we need to intercept the list of constraints.

For each transformation of source s we get a target t. In order to intercept we
make a Proxy(t) that maintains the functionality of the original target however
the setters are modified. In each setter we check to see if the additional element
is within the trace, and if not we add it the current invocation of the trace. Once
this has been completed we then call the actual setter of the target object. To
ensure traces are added for all orphans, as well as grandchildren of the target,
instead of passing the original parameter we pass a proxy of it. This allows the
recursion of the orphan tracking.

There are two types of call to intercept:

1. Mutator methods: we define a mutator method as one that has no return
type, one parameter and begins with “set”. This allows us to catch local
attributes to the target.

2. Getter methods that return a collection: we define a getter as a method that
has no parameters and returns a collection.

The former we have explained, however the latter is slightly different. Rather
than intercepting simple set and get, we intercept collection mutators like put,
add, addAll, etc.

7 Case Study

In order to demonstrate our new framework we have created a non-trivial trans-
formation between a relational database and HBase, involving a transformation
of the schema as well as the data. We then applied this to an instance of the
relational database using the employee database provided by MySQL5, a widely
used test database for benchmarking. This dataset contains four million rows
over six related tables.

For the purpose of this case study, and due to space restraints, we shall not
delve into the rules in depth for this transformation. Instead we shall use them,
partial or otherwise, to demonstrate what happens within the black-box that is
SiTra. The M2M transformation itself will be available online6.

Meta-Model of Apache HBase The meta-model of Apache HBase, the destina-
tion, is shown in Figure 6. Here we can see a very simple representation of the
internals of the NoSQL database engine. We have a Namespace, which is synony-
mous to a Database in relational terms, but that is as far as similarities between
HBase and a relational database go. A Table in a NoSQL sense is more of a key-
value store, whereas the relational view would view its Tables as a tree structure.
5 https://dev.mysql.com/doc/employee/en/
6 https://baserg.github.io/sitra

https://dev.mysql.com/doc/employee/en/
https://baserg.github.io/sitra


table 1

rows *

values *row1

table1 columnFamilies *namespace1 tables *

*values

1columnFamily

NamedElement

name: String

Row

id: String

Value

key: String
value: String

Namespace Table ColumnFamily

Fig. 6: The meta-model of a Apache HBase.

A Table contains a selection of Column Families and Rows. The former enables
more structure within the key store whilst the latter is the data itself. A Row
contains an id, this is the key for all related data to this Table. Finally we have
Values tied to the Rows and Column Families, each value has its own key to
differentiate itself from the other values within a Column Family.

This meta-model allows us to realise the structure and the data of Apache
HBase. In turn this is used to generate HBase shell to persist our transformation
to a real HBase server. In order to do this we use the template engine Xtend.

refs
*

key 1value 1sourceColumns *

table1

*columns

table1

constraints*

table 1 rows*
values *

row1

values*
refersTo1

*
refBy

target
1

Table Row Value

value: T

T

«interface»
Constraint

NamedElement

name: String
Column

nullable: Boolean

T

LocalConstraint ForeignKey

many: Boolean
Reference

Unique PrimaryKey

Fig. 7: The meta-model of a relational database.

Meta-Model of a Relational Database Since NoSQL databases generally do not
have schemas, we needed a meta-model for a relational database that includes the



data itself. Unlike OO2DB where we are purely transforming structure, NoSQL
database avoids creating structure unnecessarily. The primitive structures that
are created are simple buckets for string or binary data. Therefore in order to
properly transform a database we need to access the data within the relational
tables.

Figure 7 shows us the meta-model of a relational database, our source meta-
model. Here we have a Table with Constraints, Rows and Columns. Where a
Constraint is local to the Table, i.e. a Unique index, a Primary Key or a Foreign
Key. Those in turn reference Columns to enforce their Constraint and in the
case of a Foreign Key provide a mapping of a selection of Columns of one table
to another target table. In order to keep the data, we have a Value class, which
references the Column it belongs to and the Row it is part of. This latter element
allows us to have the data we require for the transformation.

7.1 Catching Orphans

In order to depict the orphan issue we take a subset of the transformation we
have created. Specifically the transformation of a Relational Table to a HBase
Table. When creating a HBase Table one must make a default column family
to hold the primitive data. For example the employee would contain a column
family called 0 and in there would have values relating to their name, age and
gender. In SiTra we would define a rule to be Rule<db.Table, hbase.Table>,
this would only execute on tables with no or more than two foreign keys, as
this would be a root table or a complex lookup table (which would need to be
referenced).

We can envisage a binding phase as shown in Figure 8. As normal, the target
would appear in the internal trace of SiTra as it would be added after the in-
stantiation phase, however we have introduced a new element: a column fam-
ily. This element is disconnected from the transformation trace. However when
setProperties is called, the hbase.Table is in fact a dynamic proxy instance.
This instance, as mentioned in subsection 6.2, captures getters whereby the re-
turn is a collection and in turn returns a collection proxy, which intercepts the
lists mutators. Before the addition to the collection is made, the proxy deter-
mines whether it has seen the columnFamily before and if not adds it to the
orphan collection in the currently active trace instance (as seen in Figure 5).

public void setProperties(hbase.Table target, db.Table source,
Transformer transformer) {

ColumnFamily columnFamily = new hbase.ColumnFamily();
columnFamily.setName("0");
target.getColumnFamilies().add(columnFamily);

}

Fig. 8: A sample of a scenario leading to The creation of an orphan in SiTra.



Our transformation of the employee database manually creates columns fam-
ilies in the same fashion as above, both the employee and department tables have
this default column family. Relationships however are treated slightly differently.
Those lookup tables aren’t transformed into different tables, instead are a group
of column families attached to the parent table. Therefore each relational child
table, the columns are converted to column families and are added to the par-
ent HBase table. This still uses the same mechanism as above, however there is
a loop to iterate the new column families. SiTra was able to retain all orphan
objects for this transformation.

7.2 The Nested Nature of Model-to-Model Transformation

Continuing the example of a relational table and an HBase table, the transfor-
mation will recurse by transforming the rows that the table has, and in turn
the values will be transformed. This natural tree structure that happens is cap-
tured within the new meta-model. Whereby an invocation depends on another,
as shown in Figure 5. In order to implement, and retain this information, we
use a simple stack. Not unlike a process stack, our stack frame is the invocation
element as it has access to all components: source, target, orphans and of course
dependencies. When an item is built a trace element is created to record this
transaction, it is then added to the top of the stack. Once the binding phase has
completed, it is then popped off the top.

employee table
rowId: 10002

rowId: 10001
gender = M

date_of_birth = 1953-09-02

Fig. 9: Depicting the nesting of rules

Figure 9 illustrates a small portion of our output model. Level one is that of
a relational table to an HBase table, level two transforms the rows, where the
rowId is the primary key of the table. Finally level three is the transformation of
the values, for the default column family. The tree for the whole transformation
is very large; however we have an implementation that can persist these links
into the graph database Neo4j (available at http://www.neo4j.org).

7.3 Deriving Rule Dependencies

Our meta-model retains the information regarding all transactions within the
transformation, particularly the recollection of previously transformed elements
of the source model, which is currently unavailable from the current state-of-the-
art. These two relationships between different transformations can be used to
derive the inter-rule dependencies. For example, when transforming a relational
table to a HBase table, the rule will attempt to transform its data, i.e. its rows.

http://www.neo4j.org


Once this is complete it will add the rows to itself. However the rows themselves
require the HBase table to add itself to it, its opposite. This cyclic assignment is
a must if we do not have a modelling framework to automatically set these links,
like ECORE. From this point we can derive that the first rule, in this instance,
depends on the second, and vice versus.

To gather this we need only iterate through the trace elements and generate a
graph of the rules used. If we move down a level, of NestedInvocation, we know
that the parent required it, if we find a CachedInvocation we know a) it has
been transformed before; and b) it has been recalled for this current execution.

8 Epsilon Transformation Language

The mechanisms described in this paper can be applied to other frameworks as
well. The meta-model described in Figure 5 can be presented in most frameworks;
however a key difference with SiTra and ETL is the scheduling. ETL flattens
the model, matches and instantiates all model elements before binding them
whereas SiTra is completed on the fly. However ETL can derive the dependency
links between transformations by realising the first time the bind is called on an
object, and by the way transformations are referenced, using the equivalent()
methods. The orphan capture can also be completed: if using ECORE one may
use its native notification pattern. EContentAdapter can be used on either the
first transformation or upon the ECORE resource that is tracking the output.
Opposed to intercepting calls, as is needed on regular POJOs, one may simply
interpret the notification from the change methods.

9 Related Work

Mäder explains that traceability links are rarely re-used in the maintenance
of a system despite the ever-increasing complexities that they contain [17]. He
puts partial blame to the failure of tools to provide usable functionality for
stakeholders to query and capture traceability links. The move to an integrated
traceability mechanism with a verbose trace would allow it to be persisted inside
a data store such that standard queries can be made in an attempt to solve some
of those issues.

Frédérick Jouault argues that traceability need not be part of the overall
transformation engine as a High Order Transformation (HOT) can be used, he
uses HOT, with an ATL example, to introduce trace link elements into an ex-
isting transformation script [14]. Here an instance of ATL is transformed into
another version of ATL with additional outputs along with an imperative bind-
ing. Iván Santiago et al. also used this in order to add iTrace capabilities to
transformations so they can measure the quality degradation that the introduc-
tion of trace generation causes [20]. Here we have a decoupled the mechanism
used to implement traceability; however this is an additional step for validation.
Our approach maintains the implementation within the framework in order to
remove the additional burden it places upon the developer.



10 Conclusion

The primary conclusion of this paper is that there is little in terms of built in
traceability in rule-based transformation engines. Those that do provide an ex-
ternal trace are unable to provide enough information to relate to the internals
of a M2M transformation. Model transformations themselves are relational pro-
cesses, they relate the parties involved: sources, targets and rules, but also relate
to each other and generate a dependency model within rules and executions of
rules. The latter is lost in QVT’s trace instance.

We have provided a new, independent, trace meta-model that could be used
within most M2M transformations engines to maintain the tracing information.
In addition we have provided some information on how other engines may imple-
ment this functionality, particularly the ability to track orphans. To demonstrate
these mechanisms we have implemented it by extending SiTra. These changes to
SiTra have brought it up to the current state-of-the art in terms of traceability
and provide these mechanisms natively.

References

[1] N. Aizenbud-Reshef et al. “Model traceability”. In: IBM Systems Journal
45 (2006).

[2] David H Akehurst et al. “SiTra: Simple transformations in java”. In: Model
Driven Engineering Languages and Systems. Springer, 2006.

[3] Mohammed Alwanain, Behzad Bordbar, and Juliana Küster Filipe Bowles.
“Automated Composition of Sequence Diagrams via Alloy.” In: MODEL-
SWARD. 2014.

[4] Behzad Bordbar et al. “Model Transformation from OWL-S to BPEL
Via SiTra”. In: Model Driven Architecture- Foundations and Applications.
Springer Berlin Heidelberg, 2007.

[5] J. Bowles and D. Meedeniya. “Formal Transformation from Sequence Dia-
grams to Coloured Petri Nets”. In: Software Engineering Conference (APSEC),
2010 17th Asia Pacific. 2010.

[6] Lionel Briand et al. “Traceability and SysML Design Slices to Support
Safety Inspections: A Controlled Experiment”. In: ACM Trans. Softw. Eng.
Methodol. 23 (2014).

[7] K.T. Claypool and E.A. Rundensteiner. “Gangam: a transformation mod-
eling framework”. In: Database Systems for Advanced Applications, 2003.
(DASFAA 2003). Proceedings. Eighth International Conference on. 2003.

[8] Krzysztof Czarnecki and Simon Helsen. “Feature-based survey of model
transformation approaches”. In: IBM Systems Journal 45 (2006).

[9] G. Ebner and H. Kaindl. “Tracing all around in reengineering”. In: Soft-
ware, IEEE 19 (2002).

[10] Eclipse Foundation. Xtend. 2014. url: http://www.eclipse.org/xtend/
(visited on 03/04/2015).

[11] M Fritzsche et al. “Application of Tracing Techniques in Model-Driven
Performance Engineering”. In: 4th ECMDA Traceability Workshop. 2008.

http://www.eclipse.org/xtend/


[12] Ismenia Galvao and Arda Goknil. “Survey of traceability approaches in
model-driven engineering”. In: Enterprise Distributed Object Computing
Conference, 2007. EDOC 2007. 11th IEEE International. 2007.

[13] Emsaieb Geepalla, Behzad Bordbar, and Joel Last. “Transformation of
Spatio-Temporal Role Based Access Control Specification to Alloy”. In:
Model and Data Engineering. Springer Berlin Heidelberg, 2012.

[14] Frédéric Jouault. “Loosely coupled traceability for ATL”. In: Proceedings of
the European Conference on Model Driven Architecture (ECMDA) Work-
shop on Traceability. 2005.

[15] Frédéric Jouault and Ivan Kurtev. “Transforming models with ATL”. In:
Satellite Events at the MoDELS 2005 Conference. 2006.

[16] Dimitrios S Kolovos, Richard F Paige, and Fiona AC Polack. “The epsilon
transformation language”. In: Theory and Practice of Model Transforma-
tions. Springer, 2008.

[17] Patrick Mäder. “Interactive Traceability Querying and Visualization for
Coping With Development Complexity”. In: CoRR (2013).

[18] OMG. Meta Object Facility (MOF) 2.0 Query View Transformation Spec-
ification Version 1.1. Jan. 2011. url: http://www.omg.org/spec/QVT/
1.1/PDF/ (visited on 03/04/2015).

[19] R.F Paige et al. “Building Model-Driven Engineering Traceability Classi-
fications”. In: 4th ECMDA Traceability Workshop. 2008.

[20] Iván Santiago et al. “Measuring the Effect of Enabling Traces Generation
in ATL Model Transformations”. In: Evaluation of Novel Approaches to
Software Engineering. Springer Berlin Heidelberg, 2013.

[21] Seyyed M. A. Shah, Kyriakos Anastasakis, and Behzad Bordbar. “From
UML to Alloy and Back Again”. In:Models in Software Engineering. Springer,
2010.

[22] The Apache Software Foundation. Apache HBase. 2014. url: http://
hbase.apache.org/ (visited on 03/05/2015).

[23] J.M. Vara et al. “Dealing with Traceability in the MDDof Model Trans-
formations”. In: Software Engineering, IEEE Transactions on 40 (2014).

[24] Dániel Varró and András Balogh. “The model transformation language
of the VIATRA2 framework”. In: Science of Computer Programming 68
(2007).

[25] Edward D Willink and Nicholas Matragkas. QVT Traceability: What does
it really mean? 2014. url: http://www.eclipse.org/mmt/qvt/docs/
ICMT2014/QVTtraceability.pdf (visited on 03/04/2015).

[26] S.K. Wood et al. “A Model-Driven Development Approach to Mapping
UML State Diagrams to Synthesizable VHDL”. In: Computers, IEEE Trans-
actions on 57 (2008).

[27] Andres Yie and Dennis Wagelaar. “Advanced Traceability for ATL”. In: In:
Proceedings of the 1st International Workshop on Model Transformation
with ATL (MtATL ‘09). 2009.

http://www.omg.org/spec/QVT/1.1/PDF/
http://www.omg.org/spec/QVT/1.1/PDF/
http://hbase.apache.org/
http://hbase.apache.org/
http://www.eclipse.org/mmt/qvt/docs/ICMT2014/QVTtraceability.pdf
http://www.eclipse.org/mmt/qvt/docs/ICMT2014/QVTtraceability.pdf

	Opening the Black-Box of Model Transformation

